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Resonant Two-Magnon Raman Scattering in Antiferromagnetic Insulators
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We propose a theory of two-magnon resonant Raman scattering from antiferromagnetic insulators,
which contains information not only on magnetism but also on the electronic properties in these
materials. We argue that the conventional theory does not work in the resonant regime, in which
the energy of the incident photon is close to the gap between the conduction and valence bands. We
identify the diagram which gives the dominant contribution to Raman intensity in this regime and show
that it can explain the unusual features in the two-magnon profile and in the two-magnon peak intensity
dependence on the incoming photon frequency.

PACS numbers: 78.30.Hv, 75.50.Re

There is a widespread belief that strong electron-
electron correlations in high-T, compounds may hold a
clue to the phenomenon of high-temperature superconduc-
tivity [1]. One of the manifestations of these correlations
is the fact that the insulating parent compounds are anti-
ferromagnets. An important probe of antiferromagnetism
is magnetic Raman scattering [2,3]. Its prominent signa-
ture in the underdoped high-T, materials is a strong peak
observed at about 3000 cm '. To first approximation, this
peak can be attributed to inelastic scattering from the two-
magnon excitations [3—5].

The traditional framework for understanding the two-
magnon Raman scattering in antiferromagnets has been
an effective Hamiltonian for the interaction of light with
spin degrees of freedom known as the Loudon-Fleury
Hamiltonian [6], H = a p~,,l(e; R,, ) (ef R;,)S; S, ,

where e; and ef are the polarization vectors of the incom-
ing and outgoing photons, u is the coupling constant, and

R;, is a vector connecting two nearest-neighbor sites i

and j. Shastry and Shraiman [7] have recently derived
this Hamiltonian starting from the large- U Hubbard
model. Working on a localized basis, they performed a
hopping expansion controlled by t/(U —co), where t and
U are the nearest-neighbor hopping and on-site Coulomb
repulsion, and ~ is of the order of the photon frequencies.
The leading term in the expansion turned out to be the
Loudon-Fleury Hamiltonian.

This theory works well when the frequencies of the
incoming and outgoing photons are considerably smaller
than the gap between the conduction and valence bands,
which is roughly 2 eV. The experimental reality in
high-T, materials is such, however, that the two-magnon
scattering is measured mostly in the resonant regime,
when the frequencies of the ingoing and/or outgoing
photons are close to the gap value and the cross sections
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FIG. 1. (a) A typical Raman cross section in YBa2Cu30& as a
function of transferred photon frequency. A two-magnon peak
is clearly seen. (b) The strength of the two-magnon peak as
a function of incoming photon frequency. Also shown is the
imaginary part of the dielectric constant. Data courtesy of the
authors of Ref. [9].

vary strongly as the incident photon frequency is varied
[8,9]. Luckily, it is in this regime that the cross sections
sensitively depend not just on magnetic but on the carrier
properties as well, and this makes understanding the data
particularly important.

The profile of the Raman cross section as a function
of the transferred photon frequency and the behavior of
the two-magnon peak height as a function of the incident
photon frequency are shown in Fig. 1.

The key experimental features that require explanation
are as follows: (a) the two-magnon peak is asymmetric,
with the spectral weight shifted to higher frequencies;
(b) the Loudon-Fleury Hamiltonian predicts no scatter-
ing in the A&g configuration, whereas experimentally the
resonant Ai~ cross section is about half of that in the
B~s geometry; (c) there is only one peak in Fig. 1(b)—
ordinarily one might expect two peaks, the so-called in-

going and outgoing resonances [10,11]; (d) a comparison
with the dielectric constant shows that the strength of the
two-magnon Raman scattering in Fig. 1(b) is at its maxi-
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mum away from the band edge, in fact, right at the upper
end of the features in the optical data that can be inter-
preted as the particle-hole excitations between the lower
and upper Hubbard bands.

In this paper we develop a diagrammatic approach to
Raman scattering valid in both nonresonant and resonant
regimes. For small frequencies, our results are identical to
those of Shastry and Shraiman. However, for ~co —U~—
6(J), we find that the dominant contribution to Raman
scattering comes from a diagram which is subleading in
the nonresonant region. We will argue that this diagram
accounts for most of the experimental features in Fig. 1.

We start with the one-band Hubbard model with H =
ttP(;,&(c—; c, + H.c) + Ug; n, tn;t. In the presence of

the slowly varying vector potential A(x, t) the Hubbard
Hamiltonian gets transformed to

H = Hw=o Pjq Aq+ O(A),

k-

4 ~t ~s %
rS; ~ (j)f

kf k-q $
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FIG. 2. (a) A representative diagram which contributes to
the Loudon-Fleury Hamiltonian at small incident frequencies.
Each fermion can belong to either the valence (dashed line) or
conduction (solid line) band. The emitted magnons are denoted
by the solid wavy lines. (b) The most singular diagram at
resonance.

3058

where j = p&(Bek/dk«)ck+ &~ ck ~t2 « is the current
operator, and ek = —2t(cosk„+ cosk~) is the electron
dispersion. The resonant part of the scattering matrix
element MR is obtained from the term linear in A in the
second order of perturbation theory [10]. In this process,
a photon with energy cu; and momentum which can be
safely set equal to zero creates a virtual particle-hole state
of the fermionic system which can emit or absorb two spin
waves with momenta k and —k before collapsing into an
outgoing photon with the energy tuf (see Fig. 2). Our
primary goal is to calculate the dependence of this matrix
element on the incident photon frequency.

We use the spin density wave (SDW) formalism [12]
to describe the electronic state at half filling and the ex-
citations around it. In the SDW formalism one intro-
duCeS a 1Ong-range Order in S~ = gk ck+~ opck ti

.With

q = Q —= (7r, 7r) and uses it to decouple the Hubbard inter-
action term. The diagonalization then yields two bands of
electronic states (the conduction and valence bands) with
Fk = ~Qek + A~, where the 2k —U in the strong cou-
pling limit that is assumed throughout this work. In terms
of the conduction and valence band quasiparticle operators
ak and bk, the current operator is interband to leading or-

der in t/U, j~=o ~ g„(Bek/Bk) (ak«bk«+ b„«ak«) T. o
describe the diagrams in Fig. 2, we also need the magnon-
fermion interaction. Its derivation in the SDW formalism
is straightforward, as the magnons are described as collec-
tive modes in the transverse spin channel [12]. The answer
is, for 5 = 1/2,

Hel-mag ~ [aa,ka —«,k+qeq ~ aa(k q)t
k, q

+a kb «k+„e 4,b(k, q) + (a b) + H.c.], (2)
t

where e~ are the magnon operators, tt~, g = (1/~2) x
[(1 ~ y~)/(I ~ y~)]'t, y~ = (cosq, + cosq, )/2, and, to
leading order in t/U, the vertex functions in (2) are given
by

~ aa, bb (k, q) = [—(ek + ek+q) Qq + (&k ek+q) g ],

C.„.(k, q) = 2m[~,
—

~,], (3)

where the upper sign is for 4, and 4 q. In the situation
where the photon frequencies are much smaller than 6 all
the energy denominators are of order U, and the dominant
diagrams for the Raman vertex are simply those with
the largest magnon-fermion interactions (i.e., with 4,b b, ).
One thus has to consider processes [cf. Eqs. (2) and (3)]
in which the fermion changes bands while emitting a
magnon. A representative diagram is shown in Fig. 2(a).
We collected all the leading order diagrams for the Raman
matrix element and obtained

MR(q) = n g e;,ef, [cosq, (A + p, ) —2A~p, ~],
a=x,y

where ~q are the final state magnon momenta, ~2 p, ~
=

ttq + ttq ~2Aq =
iraq gq and n: 16t26/(4k~

cu2). This is exactly the expression which Shastry and
Shraiman obtained in their derivation of the Loudon-
Fleury vertex for the Hubbard model. Observe that
within the Loudon-Fleury model the scattering in the A]~
geometry [e; = (x + y)/ J2, ef = (x + y)/~2] van-
ishes, because in the A]g geometry the Loudon-Fleury and
Heisenberg Hamiltonians commute with each other. (In
our diagrammatic approach, the vanishing of MR is due
to a cancellation between the leading order diagrams in
this geometry. ) On the contrary, in the B~g scattering ge-
ometry [e; = (x + y)/~2, ef = (x —y)/~2] the Raman
vertex is finite, Mz' —(p, + A ) (cosq, —cosq~) =
(cosq —cosq~)/$1 —y~ . The profile of the two-
magnon Raman scattering in the B]g geometry, including
the final state interaction between magnons, has been
studied several times in the literature [3,5]. The two-
magnon intensity has a narrow peak at the transferred
frequency co —3J.

A more careful treatment is, however, necessary in the
resonant region, when the incoming photon frequency is
close to the gap value, and one can no longer neglect the
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quasiparticle dispersion in the denominators. In fact, most
of the experiments on Raman scattering have been per-
formed in the frequency range where both co; and cuf dif-
fer from U only to order J. In this situation, we found that
the diagrams with the intraband fermion-magnon vertices

become dominant, since they contain more resonant de-
nominators. We analyzed these diagrams and found that
the most singular contribution to the Raman vertex comes
from the one in Fig. 2(b). The internal frequency integra-
tion in this diagram results in

(2) (ye„/Bk e;) (a «q/Bk ef) I tLq eu q
——J q ek]

MR (q) = 8i-
(tII; —2EP + I6) (co; —I),q

—EI, —Ek q + i6) (tIIf —2Ek q + iI!I)
(5)
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FIG. 3. The triple resonance region (shaded) in the (~;, cu)
plane where cu = cu, —cuf. The horizontal line corresponds to
the position of the two-magnon peak which for definiteness we
chose to be at ~ = 2.8J which is the value one obtains in the
1/5 expansion neglecting the renormalization of J [19].

where Aq = 2JQ1 —y2 is the semiclassical spin-wave
frequency. A study of the integral shows that there is a
region of cu; and cuf where all three of the denominators
in (5) vanish simultaneously, and the velocities vk =
BEI,/Rk and vq q are antiparallel to each other (otherwise,
the integral over k vanishes). This phenomenon is known
as a triple resonance [10,11]. Via a combination of
analytical and numerical techniques, we found that for
relevant cu; the triple resonance in the Raman vertex
occurs only in a narrow range of the final photon energies
cuf. The region of triple resonances is shaded in Fig. 3.
Observe that there exists only a single diagram with
three resonance denominators —it therefore contributes to
scattering in both A~ and B& geometries.

It is important for our considerations that the triple
resonance in the Raman vertex occurs only if the final state
two-magnon frequency ~; —cof equals the total magnon
energy 20,q on the two-magnon lines connected to the
fermion bubble. Only then is the second denominator in

(5) a half sum of the other two. It is easy to check that
this resonance condition is rigorously satisfied only for
the diagram which does not contain final-state magnon-
magnon interactions. On the other hand, for S = 1/2,
the dominant contribution to the conventional two-magnon
peak at —3J comes from the diagrams with multiple
magnon-magnon interactions [5]. In this situation the
Raman spectrum R(cu) can be considered as containing
two independent peaks: One is due to the triple resonance
in M& in the shaded region in Fig. 3, which for most of
the experimentally measured cu; is located close to 4J,
and the other, at transferred frequency of about 3J, is due
to the magnon-magnon scattering. Without considering in

detail the effects of the fermionic damping, which smear
the singularity in M&, we cannot conclude which of the two
peaks is stronger. The experiments indicate that the peak
at 3J is stronger than that at 4J, and the enhancement of
the Raman matrix element at larger transferred frequencies
is responsible for the observed asymmetric shoulderlike
behavior of the two-magnon profile. Suppose we now
fix cu at the two-magnon peak frequency 3J, as in Fig. 1,
and consider the variation of the peak amplitude as a
function of the incident photon frequency ~;. Obviously,
this amplitude will by itself have a maximum when the
two peaks in R(cu) merge, i.e., when the ~ = const line
intersects the region of triple resonances. From Fig. 3 we
see that the intersection occurs in a very narrow region
of ~; close to cu;

"= 2A + 8J, where the particle and
hole are excited near the tops of their respective bands
[13]. We calculated the Raman vertex in the vicinity of
the intersection and found that it diverges (in the absence
of damping) as

~i ~i
(6)

(CII; CII; + I 6)
where cu,'" can be well approximated by ~,'" = ~; "—
(c0 —2J) /8J. The 3/2 power of the denominator in (6)
is due to triple resonance, while the small factor in the
numerator comes from the vanishing of the numerator in

(5) right at the top of the band (i.e., at k = 0). In practice,
the difference between cu,'" and cu;

" can be neglected,
and Eq. (6) yields inverse square-root singularity in MR,
which implies a linear singularity in the Raman intensity,
R —IMR I' —

I
~

Equation (6) is a key result of the paper. In essence,
we have found that the intensity of the two-magnon peak
increases by an inverse linear law as one approaches the
upper edge of the fermionic band. We emphasize that the
singularity at the top of the band exists, due to the triple
resonance effects, despite the vanishing of the numerator
in (5) at this point.

We now discuss how these (and other) results are re-
lated to experiment. We listed the key experimental fea-
tures in the beginning of the paper. Here we comment
on each of them. (a) Asymmetry of the two magnon peak-
profile: Our theory predicts that for aI smaller than or,

""
the two-magnon profile should contain two peaks, one
at -3J, and the other at frequencies close to cu = 4J.
In fact, the experimentally measured two-magnon profile
in Pr2Cu04 was analyzed in [14] to contain two peaks
at 3000 cm ', and (a smaller one) at 4000 cm '. As
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1 —1000 cm ', their position is just as expected from
our calculations. However, we cannot predict the relative
intensity of the peaks. (b) Selection rules: The leading
diagram in the resonance regime contributes to the scat-
tering in both B~g and A~~ geometries. The signals in
both geometries have been observed in the experiments.
Recall that the Loudon-Fleury theory predicts scattering
only in the B~g geometry. (c) A single peak: Our the-
ory predicts a single maximum in the two-magnon peak
intensity measured as a function of the incident photon
frequency, while from the "Loudon-Fleury" diagrams we
might have expected two peaks, one at cu; = 2A, and the
other at cuI = 25 (the incoming and outgoing resonances)
[10]. (d) Peak location and shape: Our theory predicts
the maximum of the two-magnon peak intensity measured
as a function of cu; right near the upper edge of the quasi-
particle fermionic band. This is consistent with the mea-
surements of the dielectric constant, which show that the
Raman scattering is strongest right at the upper edge of
those features in the optical data that can be interpreted
as particle-hole excitations between the lower and upper
fermionic bands. We fitted the data on the peak inten-
sity from Fig. 1 (and the more recent data of the Urbana
group [15] which show that the Raman intensity resonates
at slightly larger frequencies) by our Eq. (6) and found a
very good agreement with the predicted inverse linear de-
pendence starting from cu; —2.5 eV and nearly up to the
resonance frequency which is —3.1 eV [15]. The effects
of fermionic damping are relevant only at co; —3 eV, i.e.,
in the immediate vicinity of the resonance.

To summarize, we developed a diagrammatic approach
to Rarnan scattering in antiferromagnetic insulators which
can be used in both the resonant and nonresonant regimes.
We described for the first time the two-magnon Raman
scattering in the resonant regime, when the incident and
final photon frequencies are only 6 (J), apart from the gap
between conduction and valence bands. This frequency
range is relevant to recent experiments on undoped high-
T, compounds. We identified the diagram which gives a
dominant contribution to the Raman vertex in this regime,
and found the region in the (ro;, cof ) plane where the Raman
vertex is strongly enhanced due to triple resonance. We
demonstrated that the triple resonance, combined with the
SDW dispersion relation for the carriers, explains the
unusual experimental features in the two-magnon profile
and in the two-magnon peak intensity dependence on
the incoming photon frequency. In particular, our theory
predicts the maximum of the two-magnon peak intensity
right at the upper edge of the features in the optical data,
as observed in several materials [9]. This serves as a
partial verification of the SDW picture for the carriers,
which, despite much theoretical work, has not been well
established experimentally in these materials.

Beyond the scope of the present theory are the unex-
pectedly large width of the symmetric part of the two-

magnon peak, which is probably related to the magnon
damping due to the interaction with phonons [16], and the
existence of a considerable Raman signal R(cu) well above
the maximum possible two-magnon energy (i.e., 41) [17],
which may be related to chiral spin Iluctuations [18].
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