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Exact Exchange Potential Band-Structure Calculations by the Linear Muffin-Tin
Orbital —Atomic-Sphere Approximation Method for Si, Ge, C, and Mno
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We present electronic band-structure calculations which use the exact Kohn-Sham density-functional
exchange potential instead of the exchange potential exploited in the local density approximation
(LDA). We treat Si, Ge, diamond, and antiferromagnetic MnO. The calculated band gaps are much
larger than those obtained by the LDA, e.g. , 1.93 eV for Si while 0.45 eV in the LDA. Our calculation
suggests also that MnO is a Mott-Hubbard insulator with a large band gap. The calculated exact
exchange potentials show significant structures reflecting the atomic shells.

PACS numbers: 71.10.+x, 71.25.Rk, 75.50.Ee

Density-functional (DF) band-structure calculations us-

ing the exchange-correlation (XC) energy in the local
density (or spin-density) approximation predict too small
band gaps for semiconductors and insulators [1]. The
self-interaction-corrected (SIC) methods [2,3] give band
gaps in good agreement with experiments. This shows
the importance of the self-interaction cancellation in the
evaluation of band gaps. Meanwhile, the use of the ex-
act exchange (EXX hereafter) potential in the framework
of DF theory has been proposed by Langreth and Mehl
[4]. The EXX energy is purely of order e [5], where e
is the electron charge, and has a contribution that cancels
the self-interaction completely. A method exploited by
Talman and Shadwick for atomic calculations [6] can be
identified [4] as a DF calculation using the EXX energy
without the correlation energy (we denote this method the
"EXX-only method" below). In this Letter, we present
DF band-structure calculations using the EXX energy by
the linear muffin-tin orbital (LMTO) method [7—9] in the
atomic-sphere approximation (ASA). Our EXX LMTO-
ASA method is considered to be a natural extension to
solids of the Talman-Shadwick method. Our preliminary
calculations for MgO and CaO, together with some de-
tailed explanation of the method, are given in Ref. [10].

The EXX energy F, is defined as [4]
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act solution. However, the two methods give completely
different eigenvalue dispersions for the homogeneous elec-
tron gas despite the fact that their total energies are exactly
the same. The EXX-only method gives the dispersion for
the noninteracting electron gas. On the other hand, the
nonlocal one-particle effective potential in the HF method
gives zero density of states at the Fermi level ~ Correspond-
ingly, the HF method in general gives too large band gaps.

In ASA, the space is divided into atomic spheres (AS s).
Any points in the space are denoted by (r, R), where R
is the index for AS and r = (r, 8, P) (r ( R) is a vector
denoting the position in each AS. R denotes the radius of
AS. The eigenfunction in the LMTO-ASA can be written
as [Eq. (6.29) in Ref. [9]]

p" (r, R) = g(A~Lpttt(r) + Bttt. QRi(r))YL(0, p), (2)

where YL is the spherical or the cubic harmonics, and

PRt(r) is a solution of the radial Schrodinger equation in

each AS. The overdot denotes the energy derivative (@
corresponds to @i' in Ref. [8]). To obtain the coefficients

kj kjA«and BRL, we need the LMTO Hamiltonian HMT and the
overlap integral OMT, which are given as explicit functions
of the potential parameters 2~i —= (e„,C, ~A, p, y)ttt [8].

In LMTO-ASA, the EXX energy F. can be obtained
through the procedure proposed by Svane and Andersen
[11]. It is written for each spin (omitting the spin index)
and for the valence electrons as

where i/t; are taken to be occupied Kohn-Sham (KS)
orbitals (It = e /2 = 2m = 1). Following the ordinary
DF theory, we assume that the one-particle effective local
potential V,&&(r) for a given density is determined uniquely
within a constant. By use of V,tt(r), we can construct a
set of KS orbitals, which in turn defines F as a functional
of the density.

In the Hartree-Fock (HF) method, the exchange energy
is also written in the same form as Eq. (1), but it is treated
as a functional of the orbitals. For the hydrogen atom,
both the HF method and the EXX-only method give the ex-

fV PV Al PV

+4R'(Li ~ L2. L3 L4)x - -X, (3)
RL RtL RLl R'L4'

kj+ kjX -, = A A
RL1R'L4 . RL~ RtL4kj

(4)

Here L = (L, Ip) is the composite index, where lp takes
the values 0 or 1; 0 corresponds to quantities relevant to

kj kj
@ and 1 to those relevant to cb For example, A -. = ARL

RL
kj kjfor lp = 0 and A = BRL for Ip = 1. The summation
RL

of Eq. (3) is taken for R, R', Lj, L2, Lz, and L4 The.
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quantity I« is dehned as

fV fV fV PV
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l(r + R) —(r' + &')I

f;,(r) = @,dr)I'~(~, 0) (6)

We restrict the summation of Eq. (3) up to the second
nearest pairs following Ref. [11). The contributions from
the core-core and the core-valence part to E, can be in-

cluded by extending the index L so as to run over both
(L, Ip) and an index representing the core wave functions.
We assume that there is one-to-one correspondence be-
tween the spherically averaged radial density n, (r, R) and
the spherically symmetric potential V,«(r, R). The ex-
change energy E, is given as a functional of V,ff(r, R),
and hence is given also as a functional of n, (r, R) due to
the above assumption. BE,/BV, fr(r, R) can be calculated
by the use of an equation which is symbolically written as

lt
BE, BX ) B2'R, BE, BIR,,

BVq«t BX B +Rl ) BVe«BIRR' BVe«

In order to calculate the quantity in parentheses of the
first term in the right-hand side (RHS) of Eq. (7), that
is, BE,/B 2~i, we use a simple two-point numerical
derivative. Other quantities in the RHS of Eq. (7) are
calculated from P Qr) and BP -, (r)/BV, fr(r', R) in each
AS. The latter quantity is expressed by the use of the two
independent solutions of the radial Schrodinger equation
[6]. Based on a similar equation to Eq. (7), we can also
calculate Bn, (r, R)/B V,«(r', R').

The EXX potential V, (r, R) = BE,[n, j/Bn, (r, R) is cal-.
culated from the above two quantities, BE,/BV, ft(r, R)
and Bn, (r, R)/BV, «(r', R'), by solving the integral equa-
tion [12]

BE [n, ]
BV,«(r, R)

, Br4 (r', R') BE,[n, ]dr
BV,«(r, R) Bn, (r', R')

Here we can restrict R and R' within the primitive cell
considering the periodic boundary condition of the crystal.
In the actual procedure, the integration in Eq. (8) is
replaced by a discrete sum using the trapezoidal rule for
integration. Then Eq. (8) becomes a linear equation, and
the EXX potential is obtained by solving it.

We use the LDA correlation energy given by von Barth
and Hedin [13]. As is well known [1], the success of the
LDA in actual applications to some extent is owed to an
error cancellation between the exchange and correlation
energies. We can by no means expect such a cancellatIon
in our treatment. This causes a rather big error in the cor-
relation energy that seemingly disappears in the LDA. A
possible improvement to the present approach may be the
following. The correlation energy functional can be ex-

TABLE I. Comparison of the calculated eigenvalues (in eV)
relative to the eigenvalue at I ~s, . The LDA and EXX
eigenvalues are calculated by the LMTO-ASA method [14].
Experimental values are taken from Ref. [24] for Si and
diamond, and from Ref. [25] for Ge.

Si

1 ]s;

L],.
L3,,
r,.
X4

LDA

0.45
2.65
3.07
1.41
3.22

—12.07
—2.92
—1.20

EXX

1.93
3.79
4.43
2.65
4.31

—11.35
—2.46
—0.91

Expt.

1.17
3.4
4.2

2.1, 2.4 ~ 0.15
4.15 ~ 0. 1

—12.5 ~ 0.6
—2.9, —3.3 ~ 0.2
—1.2 ~ 0.2, 1.5

~is,

Ll, (&;1
L3,.
r, .
Ll

Diamond

~]s.

r, .
L],

2.70
0.40
0.32
3.67

—12.68
—7.62
—1.40

4.00
5.61
13.50
—21.6
—13.65

3.55
1.90
1.57
4.43

—12.01
—6.99
—1.15

5.12
6.61
14.04
—21.4
—13.09

3.24
0.98
0.87
4.3

—12.6 + 0.3
—7.7 ~ 0.2, —7.4 ~ 0.2

—1.4 ~ 0.2

5.48
7.3

15.3 ~ 0.5
—242~1, 21~1

—12.8 ~ 0.3

pressed by the use of the zeroth order propagator, which is
constructed from the KS orbitals, in diagrammatic expan-
sion. A summation of dominant diagrams and its density-
functional derivative will be, in principle, evaluated by a
similar method to the present one.

Starting from the LMTO program by van Schilfgaarde
et al. [14], we have developed a computer code [10]
which executes the self-consistent nonrelativistic calcula-
tion with the EXX potential V .

Si, Ge, and diamond. —For the diamond structure, we
insert the empty AS's (denoted as the F.-AS's). All the
AS radii R are set to the same value. The Si(3s3p3d)
[or Ge(4s4p4d) and C(2s2p3d)] and the F-AS(ls2s3d)
orbitals are used as the basis. The combined correction
is not taken into account. After performing the EXX
self-consistent calculation, the eigenvalues are calculated
by the use of the final potential with the same basis;
the combined correction is included. The Bril louin-
zone summation is performed with 29 k points in the
irreducible wedge of the zone; it takes about 35 min per
iteration on an Intel 80486 (66 MHz) processor.

We summarize the eigenvalues in Table I. The calcu-
lated band gaps are much larger than those of the LDA,
but not so large as those of HF (the band gaps by the HF
method are evaluated as 5.6, 4.2, and 12.1 eV for Si, Ge,
and diamond, respectively [15]). Through a model analy-
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sis Gunnarson and Schonhammer claimed that the true DF
band gaps might be close to the minimum excitation ener-
gies for semiconductors and that the LDA might be a poor
approximation for the evaluation of band gaps [16]. Fol-
lowing their argument, we may expect that inclusion of
some suitable treatments of the correlation energy func-
tional beyond the LDA may improve the agreement of the
band gaps with the experimental ones.

The EXX potentials for Si are shown in Fig. 1 together
with the radial density n, (r, R). We can see that the
dips in the EXX potential correspond to the peaks of
the radial density; i.e., the exchange potential for the
occupied orbitals (bands) is enhanced to be more negative.
This shows a good correspondence with the results for
atoms [6] and with a similar enhancement observed in
the generalized gradient approximations [4,17]. Such an
enhancement seems quite reasonable if we consider the
cancellation of the self-interaction. The eigenvalues of
occupied orbitals are pulled down due to this effect. The
electrons become more localized than LDA (the numbers
of valence electrons in the Si-AS are 3.21 for LDA and
3.34 for EXX) and the valence band width is reduced. The
difference of the EXX potential at r = R for the Si-AS and
the E-AS is larger than that of the LDA potential. This

indicates that the nonspherical contribution to the exchange
potential (not considered here) will be more important than
in LDA.

MnO. —We calculate the bands of MnO in the antifer-
romagnetic structure of the second kind [18]. There are
one up-spin Mn site (Mnup-AS), one down-spin Mn site
(Mndn-AS), and two oxygen sites (0-AS) in the primitive
unit cell. All the AS radii R are set to the same value.
We use the Mn(4s4p3d) and O(2s2p) orbitals as the ba-
sis. After performing the self-consistent calculation, we
calculate eigenvalues using the Mn(4s3d) and O(2s2p) or-
bitals as the basis, taking account of the contribution of
the Mn(4p) orbitals by the down-folding method [19]with
the use of the combined correction. The Brillouin zone
summation is performed with 65 k points in the irreducible
wedge of the zone. The calculated density of states (DOS)
is shown in Fig. 2. The separate parts of occupied DOS in

Fig. 2 can be identified as O(2s), O(2p), Mn[3d(t2g J)], and

Mn[3d(eg j.)] bands from the bottom, respectively. The
character of the conduction-band bottom is Mn(4s) and
the minimum band gap is 3.73 eV, while the LDA gives
0.62 eV [20] and the experimental one is 3.7 ~ 0.1 [21].
The exchange splitting of 15 eV between the unoccupied
Mn(3d t') and occupied Mn(3d J) bands is much larger than

the LDA results. Recent SIC-LDA calculations also give
wide band gaps of 3.57 eV [3] and 3.98 eV [2], and give
a similar exchange splitting. Our calculation is qualita-
tively in agreement with a SIC calculation by Anisimov,
Korotin, and Kurmaev [22] and indicates that MnO is a
Mott-Hubbard insulator, which is in contrast to the results
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FIG. l. Exchange potential V for Si in each atomic sphere.
The LDA exchange potential is calculated by the use of the
density obtained by the self-consistent EXX calculation. We
also show the radial density in Si-AS. The mean values of
the EXX potentials are set equal to that of the LDA. The Si-
AS and E-AS radii are the same (2.526 a.u. ). For the EXX
potential, we have to add small delta function contributions
W&6(r —R) where WR = —0.044 for Si, and W& = 0.088 for
the empty AS (see Ref. [10]).
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FIG. 2. MnO: EXX density of states. The top of the valence
band energy is set to zero. The separate parts below zero can be
identified as the O(2s), O(2p), Mn[3d(t&, 1)], and Mn[3d(e„ 1)]
bands from the bottom, respectively.
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by Szotek, Temmerman, and Winter [3], where the oc-
cupied O(2p) bands lie between the unoccupied Mn(3dt)
bands and occupied Mn(3d[) bands [23]. The spin mag-
netic moments of 4.90p& obtained by EXX is larger than
the 4.71p,~ of the LDA [20] (4.79p, ~ and 4.58p, & in experi-
ments [2]). The EXX potential is compared with the LDA
result in Fig. 3. The difference of the exchange potentials
between each spin is strongly enhanced.
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