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origin of the crack formation. It is noteworthy that the
temperature variation due to cooling by evaporation is
very small (we can estimate it to 10 ' C) and does not
contribute significantly to the stresses. Finally, we ob-
serve that cracks nucleate very easily in this system.
From the order of magnitude of the critical stress inten-
sity factor Ktc =—10 N m ' [14], we can estimate the
stress required to develop a fracture from a Aaw of typi-
cal size close to the size of the material inhomogeneities
(of the order of the particle radius): Ktc//~a = 10 N
m . This value is smaller than the typical maximum
stress induced by the embedded gel contraction BAN
6 X 10~ Nm, where B = 2 X 10 Nm is the bulk
modulus of the medium and Aq = 3 x 10-' the avail-
able volume fraction of water. In addition, Ktc/Qvra is
also smaller than the capillary pressure drop, which is of
the order of 2y/a = 2 X 107 Nm, where y is the air-
water interfacial tension.

Experimentally, we observe the formation of the first
cracks about 10 min after the beginning of drying. Start-
ing from the evaporation exposed surface, they penetrate
the sample for about 1 mm. About 1 min later, a pattern of
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crack growth direction
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300 p,m

FIG. 2. Top views of the crack pattern: (a) crack front
invading the cell, (b) secondary branching, taken about 10 min
later. The evaporation side is on the left. The cell thickness is
15 pm.
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cracks covers the whole width of the cell. Progressively,
the cracks grow and invade all the sample as evaporation
continues. Finally, multiple branching and fracture oc-
cur when the lost water volume becomes large. Figure 2
presents typical photographs of the observed crack pattern.
When the sample thickness is increased above —= 150 p, m,
the spatial repartition of the cracks is no longer unidimen-
sional as fractures parallel to the open side form as the front
moves. We measured the variation of the wavelength A as
a function of the sample thickness for e ~ 100 p, m. As
shown in Fig. 3, A increases continuously with e, its vari-
ation deviates only slightly from a simple linear increase.

To explain the periodicity of the patterns observed,
we remark that the crack constitutes a preferential path
of evaporation. So, although the stress is relaxed in
the vicinity of a crack just after it opens, the stress
reincreases with time due to water loss by the aperture.
The superposition of the internal stress induced by water
drainage on the crack-relaxed stress yields a maximum
in the variation of the stress with the distance from the
crack. It results that the next crack will form or grow at
a well defined spacing from the initial crack. An exact
determination of the stress field in the slab is difficult
and would require numerical computations. To find the
relevant parameters, we set up here a simplified model
allowing a physical discussion. Considering only what
occurs in a plane perpendicular to the direction of drying,
we develop a 2D model. The x axis is chosen parallel to
the glass-plates direction and the Y axis perpendicular to it
(see inset in Fig. 4). To calculate the stress field, we use a
scalar model with a 1D displacement u(x, y, t) parallel to
the x axis [15], and the evolution of the water content
is treated by analogy with the temperature variations
in a nonisothermal problem [16]. Then the xx and xy
stress component are given by o., = E[(Bu/Bx) + C]
and o;Y = E(Bu/By) where E is the effective gel elastic
modulus, and EC is the internal stress created by the

20 40 60 80 100 120
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FIG. 3. Variation of the measured wavelength as a function of
the cell thickness. The bars are the errors in the measurements.
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related to the stress relaxation due to the presence of
the crack, of the same form as [3], it increases with
X. The second expresses the internal stress created by
the water content variation when u = 0 everywhere, this
term increases with time and decreases with X. The third
is a correction of the second, taking into account that,
after removing the crack, deformation occurs (u 4 0) to
counterbalance the nonuniformity of the internal stress.
In practice, this last term is negligible and $„is given by

variations of the water volume: C = (p p
—p )/p p,

where cp
„

is the water volume fraction, and p p is
the value of cp„ in the absence of gel shrinkage. The
equilibrium relation can be expressed as Bo.„/Bx+
Bo,~/By = 0, which leads to

u BQ BC+
Bx dy2 Bx

It is noteworthy that this scalar description corresponds
to an electric analogy of the elastic problem, u being the
equivalent of the electrostatic potential, o and o-,~ of the
currents on x and y, and —BC/Bx of a charge density.

Now let us assume that a crack perpendicular to the
evaporation surface, i.e., to the plane x, y, forms at t = 0
in x = 0. As water is evacuated by the crack, C varies
along x and, in the framework of the analogy with a
thermal problem, the evolution of C(x, t) is given by

BC DC= D
dt BX2

where the diffusion coefficient D is related to the transport
of water through the porous medium that constitutes the
silica gel [16]. The boundary conditions are no slip on the
glass plates, u = 0 in y = 0 and no stress on the surface
of the crack, a.„=0, i.e. , Bu/Bx + C = 0 in x = 0 on
one hand, and a constant flux of water Jp in x = 0, i.e.,

BC/Bx = Jp/D in x = 0 and C ~ C for x ~ ~ on the
other hand.

To solve the coupled set of Eqs. (1) and (2), we first
consider the case when there is no water loss, Jp =
0. The stress field then results solely from the crack
opening and will correspond to t = 0. Using a Fourier
decomposition on y, we find for the dimensionless stressX„=~.,/AC:

(2)

2 sin~ YX„=1 ——arctan
7T sinh~X

where X = I/e and I' = y/e. The variation of X„versus
1X for Y =
2 corresponds to the curve T = 0 in Fig. 4.

When Jp 4 0, X,
„

involves three terms. The first is

FIG. 4. Variation of the dimensionless stress X„=o. ,/EC
as a function of the dimensionless distance X = x/e calculated

1for I' = y/e =
2 and K = 1 and for different values of

T = Dt/e~ From .down to up, T = 0, 0.4, 0.8, 1.2, 1.6, and 2.
Inset: coordinate system.
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FIG. 5. Variation of the calculated dimensionless wavelength
A = A/e as a function of K = Jpe/DC Inset: measured.
ratio A/e as a function of e; the bars are the errors in the
measurements.

where T represents the dimensionless time T = Dt/e
and K the dimensionless Aux of water content in X = 0,
K = Jpe/DC . First, we consider the case K = 1 (see
Fig. 4). The variation of g„with X exhibits a maximum
which increase with time. As a consequence, the next
crack will preferentially form or grow near the first one.
Furthermore, as shown by numerical calculations, the po-
sition of the maximum on X, A, is practically independent
of T, leading to a well defined spacing between the cracks.
When K is varied, the shape of X„(X,T) changes. When
K increases, as the flux of water increases (i.e., the ab-
solute value of the slope in X = 0 of the second term of
X,„),the maximum is more pronounced and gets closer
to X = 0. That results in a decrease of A. In contrast,
when K decreases, the maximum flattens and A increases.
Numerical calculations show, however, that the variation
of A with K is very weak (see Fig. 5).

Let us now turn back to the experiments. The various
runs were done under the same experimental conditions;
K is simply proportional to e, so K varies over about
a factor of 10. Consequently, A = A/e is expected to
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decrease slightly with e, good agreement is observed with
the measured variation (se inset in Fig. 5). The direct
comparison of the experimental data with the calculations
requires knowledge of Jo, D, and C . Their precise
determination is tricky but rough estimates can be done.
Jo can be taken of the same order as the mean volume
rate of water loss, from weighing measurements, we
find Jo —= 10 7 m s '. D is given by the product of the
capillary characteristic velocity (=—y/rl, where ri is the
water viscosity), and the hydraulic radius of the pore
gel calculated from the expression of Kozeny-Carman
[17], yielding D = 3 x 10 s m s '. Finally, C can be
estimated as a fraction of Aq . C —= 10 '. So we
find, for e = 100 p, m, K =—3 X 10 . For this value,
our simplified model leads to A —= 2 —3 [15] which is
consistent with the experimental values (see Fig. 5).

To conclude, we find that directional drying in a
confined geometry leads to the formation of regular
patterns of crack. We propose that the characteristic
wavelength results from the competition between the
stress relaxation due to crack opening and the stress
increase due to water loss. Good agreement is found
between the experimental values and estimates based on
a simplified 2D scalar model. Further investigations on
the dynamics will allow confirmation of our model and a
gain in insight into the relation between this mechanical
problem and other one-dimensional cellular systems.

We are grateful to M. Cloitre and I. Marsone for their
help in the experiment and for valuable discussions.
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