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Regular Patterns of Cracks Formed by Directional Drying of a Collodial Suspension
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We studied the pattern of cracks formed during the drying of a collodial suspension.

Because of

water evaporation, particles and ionic species accumulate near the surface and a gel forms and shrinks.
In a confined geometry, the gel shrinkage leads to large stresses which are the cause of crack formation.
For the 1D geometry used, we observe that the cracks are regularly spaced. Taking into account the
competition between stress relaxation due to crack opening and stress increase due to water loss through
the crack, we develop a simplified model which allows understanding of the observed pattern.

PACS numbers: 62.60.Mk, 47.20.Hw, 47.20.Ky, 82.70.Gg

In recent years, there has been much interest in crack
formation and breaking phenomena. Several statistical
models have been introduced to describe the failure of
disordered solids [1,2]. A special case of great interest
for practical applications is the rupture of surface layers
which often occurs due to the mismatch between the elas-
tic properties of the bulk matter and those of the film
[3,4]. On the other hand, multiple crack growth caused
by thermal shock has been investigated; in particular, the
stability of the propagation of parallel crack penetrating
a sample after quenching was analyzed [5-10]. These
situations would constitute a model in fracture mechan-
ics of the problem of the nonlinear dynamics of cellular
structure which has been mainly investigated in hydrody-
namics and in directional solidification [11].

In this Letter, we report the crack pattern formed by
directional drying of thin collodial suspension slabs. The
cracks are all parallel to the drying direction and to the
smallest dimension of the sample. We show that they
form a periodic pattern with a wavelength increasing with
the sample thickness. These observations are related to
the fact that a crack constitutes a preferential path of
evaporation. Using a scalar description of the mechanical
properties and an analogy with a thermal problem, we
calculate the stress field in a simplified 2D geometry. We
show that the coupling between elasticity and diffusion
leads to a well defined spacing between the cracks.
Its variation as a function of the sample thickness is
in qualitative agreement with the wavelength variation
observed experimentally.

The experiments were carried out on thin parallelpiped
cells made from two transparent glass slides of dimen-
sions 26 X 75 mm? (see Fig. 1). The two slides were first
separated by Mylar spacers placed along the longest slide
sides and then the two sides were sealed with epoxy. The
other two sides were left open in order to fill the cell
and allow evaporation to take place. Spacers of thick-
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nesses varying from 15 to 100 um were used. The fi-
nal thickness of the cell e was controlled using a high-
precision micrometer and the parallelism of the slides was
determined by interferometric observations. The sample
used was an aqueous collodial silica suspension having
a high particle volume fraction (® = 0.33). The radius
of the particles @, determined by electron microscopy,
is 9 £ 2 nm. The particle surface bears a high negative
charge density (the pH is about 9.0); then, in the ab-
sence of evaporation the suspension is stable [12]. The
cell was partially filled by capillary rise at about a 2 cm
height and placed horizontally. Drying phenomena then
begin. Near the inner meniscus, the air is rapidly satu-
rated by water and evaporation stops. In contrast, near
the outer meniscus, the water vapor is evacuated and the
sample regularly loses water. So the particles accumu-
late near the open surface and since, at the same time, the
ionic strength increases under our physiochemical condi-
tions, a collodial gel forms. Capillary tension induces
water drainage to prevent exposure to air of the silica
particle near the outer meniscus leading to the shrink-
age of the gel [13]. Since the gel sticks on the cell
glass plates, it results in large stresses which are at the

glass plates

mylar

FIG. 1.
drying.

Schematic of the cell used to observe directional
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origin of the crack formation. It is noteworthy that the
temperature variation due to cooling by evaporation is
very small (we can estimate it to 107! °C) and does not
contribute significantly to the stresses. Finally, we ob-
serve that cracks nucleate very easily in this system.
From the order of magnitude of the critical stress inten-
sity factor Kic = 10> Nm™>? [14], we can estimate the
stress required to develop a fracture from a flaw of typi-
cal size close to the size of the material inhomogeneities
(of the order of the particle radius): Kic//7a = 10° N
m~2. This value is smaller than the typical maximum
stress induced by the embedded gel contraction BAg,, =
6 X 108 Nm™2, where B =2 X 10° Nm™2 is the bulk
modulus of the medium and Ag, = 3 X 10~! the avail-
able volume fraction of water. In addition, Kic//7a is
also smaller than the capillary pressure drop, which is of
the order of 2y/a = 2 X 107 Nm™, where vy is the air-
water interfacial tension.

Experimentally, we observe the formation of the first
cracks about 10 min after the beginning of drying. Start-
ing from the evaporation exposed surface, they penetrate
the sample for about 1 mm. About 1 min later, a pattern of

i
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FIG. 2. Top views of the crack pattern: (a) crack front
invading the cell, (b) secondary branching, taken about 10 min
later. The evaporation side is on the left. The cell thickness is
15 pm.
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FIG. 3. Variation of the measured wavelength as a function of
the cell thickness. The bars are the errors in the measurements.

cracks covers the whole width of the cell. Progressively,
the cracks grow and invade all the sample as evaporation
continues. Finally, multiple branching and fracture oc-
cur when the lost water volume becomes large. Figure 2
presents typical photographs of the observed crack pattern.
When the sample thickness is increased above =150 um,
the spatial repartition of the cracks is no longer unidimen-
sional as fractures parallel to the open side form as the front
moves. We measured the variation of the wavelength A as
a function of the sample thickness for e = 100 um. As
shown in Fig. 3, A increases continuously with e; its vari-
ation deviates only slightly from a simple linear increase.

To explain the periodicity of the patterns observed,
we remark that the crack constitutes a preferential path
of evaporation. So, although the stress is relaxed in
the vicinity of a crack just after it opens, the stress
reincreases with time due to water loss by the aperture.
The superposition of the internal stress induced by water
drainage on the crack-relaxed stress yields a maximum
in the variation of the stress with the distance from the
crack. It results that the next crack will form or grow at
a well defined spacing from the initial crack. An exact
determination of the stress field in the slab is difficult
and would require numerical computations. To find the
relevant parameters, we set up here a simplified model
allowing a physical discussion. Considering only what
occurs in a plane perpendicular to the direction of drying,
we develop a 2D model. The x axis is chosen parallel to
the glass-plates direction and the y axis perpendicular to it
(see inset in Fig. 4). To calculate the stress field, we use a
scalar model with a 1D displacement u(x, y, ¢) parallel to
the x axis [15], and the evolution of the water content
is treated by analogy with the temperature variations
in a nonisothermal problem [16]. Then the xx and xy
stress component are given by o, = E[(du/dx) + C]
and o, = E(du/dy) where E is the effective gel elastic
modulus, and EC is the internal stress created by the
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FIG. 4. Variation of the dimensionless stress 3,, = 0 /ECx
as a function of the dimensionless distance X = x/e calculated
for Y =y/e = % and K =1 and for different values of
T = Dt/e?. From down to up, T = 0,0.4,0.8,1.2,1.6, and 2.
Inset: coordinate system.

variations of the water volume: C = (¢wo — ©w)/ Pwo>
where ¢, is the water volume fraction, and ¢, is
the value of ¢, in the absence of gel shrinkage. The
equilibrium relation can be expressed as 9o, /dx +
doxy/dy = 0, which leads to

2 2

dx? dy? dx

It is noteworthy that this scalar description corresponds
to an electric analogy of the elastic problem, u being the
equivalent of the electrostatic potential, o, and oy, of the
currents on x and y, and —dC/dx of a charge density.

Now let us assume that a crack perpendicular to the
evaporation surface, i.e., to the plane x,y, forms at t = 0
in x = 0. As water is evacuated by the crack, C varies
along x and, in the framework of the analogy with a
thermal problem, the evolution of C(x, ) is given by

acC 9°C

o~ Pox2 @
where the diffusion coefficient D is related to the transport
of water through the porous medium that constitutes the
silica gel [16]. The boundary conditions are no slip on the
glass plates, # = 0 in y = 0 and no stress on the surface
of the crack, o, = 0, i.e., du/dx + C =0 in x = 0 on
one hand, and a constant flux of water Jy in x = 0, i.e.,
8C/ox = Jo/D in x = 0 and C — C, for x — o on the
other hand.

To solve the coupled set of Egs. (1) and (2), we first
consider the case when there is no water loss, Jy =
0. The stress field then results solely from the crack
opening and will correspond to r = 0. Using a Fourier
decomposition on y, we find for the dimensionless stress
S = O /ECs:

sinmY

sinhm X ) &
where X = x/eand Y = y/e. The variation of X, versus
X for Y = % corresponds to the curve T = 0 in Fig. 4.
When Jy # 0, 2., involves three terms. The first is

2
S =1-— —~arctan(
s

related to the stress relaxation due to the presence of
the crack, of the same form as [3], it increases with
X. The second expresses the internal stress created by
the water content variation when u = 0 everywhere, this
term increases with time and decreases with X. The third
is a correction of the second, taking into account that,
after removing the crack, deformation occurs (1 # 0) to
counterbalance the nonuniformity of the internal stress.
In practice, this last term is negligible and 3,,, is given by

2 T 1 Y
S =|1-— ~<l + ZKW/_> arctan(smw )
T T sinmX

+ (2Kﬁ)i erfc(zjf), “

where T represents the dimensionless time T = Dt/e?
and K the dimensionless flux of water content in X = O,
K = Jpe/DC. First, we consider the case K = 1 (see
Fig. 4). The variation of %, with X exhibits a maximum
which increase with time. As a consequence, the next
crack will preferentially form or grow near the first one.
Furthermore, as shown by numerical calculations, the po-
sition of the maximum on X, A, is practically independent
of T, leading to a well defined spacing between the cracks.
When K is varied, the shape of 3,,,(X,T) changes. When
K increases, as the flux of water increases (i.e., the ab-
solute value of the slope in X = 0 of the second term of
3,x), the maximum is more pronounced and gets closer
to X = 0. That results in a decrease of A. In contrast,
when K decreases, the maximum flattens and A increases.
Numerical calculations show, however, that the variation
of A with K is very weak (see Fig. 5).

Let us now turn back to the experiments. The various
runs were done under the same experimental conditions;
K is simply proportional to e, so K varies over about
a factor of 10. Consequently, A = A/e is expected to
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FIG. 5. Variation of the calculated dimensionless wavelength
A = AJe as a function of K = Jye/DC.. Inset: measured

ratio A/e as a function of e; the bars are the -errors in the
measurements.

2983



VOLUME 74, NUMBER 15

PHYSICAL REVIEW LETTERS

10 APRIL 1995

decrease slightly with e, good agreement is observed with
the measured variation (se inset in Fig. 5). The direct
comparison of the experimental data with the calculations
requires knowledge of Jy, D, and C.. Their precise
determination is tricky but rough estimates can be done.
Jo can be taken of the same order as the mean volume
rate of water loss, from weighing measurements, we
find Jo = 1077 ms~'. D is given by the product of the
capillary characteristic velocity (=vy/n, where 7 is the
water viscosity), and the hydraulic radius of the pore
gel calculated from the expression of Kozeny-Carman
[17], yielding D = 3 X 107®* m?s~!. Finally, C« can be
estimated as a fraction of Ag,: C. =10"!. So we
find, for e = 100 um, K = 3 X 1073, For this value,
our simplified model leads to A = 2-3 [15] which is
consistent with the experimental values (see Fig. 5).

To conclude, we find that directional drying in a
confined geometry leads to the formation of regular
patterns of crack. We propose that the characteristic
wavelength results from the competition between the
stress relaxation due to crack opening and the stress
increase due to water loss. Good agreement is found
between the experimental values and estimates based on
a simplified 2D scalar model. Further investigations on
the dynamics will allow confirmation of our model and a
gain in insight into the relation between this mechanical
problem and other one-dimensional cellular systems.

We are grateful to M. Cloitre and I. Marsone for their
help in the experiment and for valuable discussions.
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FIG. 2. Top views of the crack pattern: (a) crack front
invading the cell, (b) secondary branching, taken about 10 min
later. The evaporation side is on the left. The cell thickness is
15 pm.



