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By extensive Monte Carlo simulations of a lattice gas model we have studied the controversial nature
of the gas-liquid transition of a fluid confined between two parallel plates that exert competing surface

fields.

We find that the transition is shifted to a temperature just below the wetting transition of a

semi-infinite fluid but belongs to the two-dimensional Ising universality class. In between this new type
of critical point and bulk criticality, a response function x™*varying exponentially with D is observed,
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2 Inym>* /D = ¢!, where € is a new length characterizing interfaces.
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PACS numbers: 68.45.Gd, 64.60.Fr, 68.35.Rh

Phase transitions in confined geometry, such as liquid-
gas condensation in pores or between parallel walls, may
exhibit novel phenomena due to the combined effect of fi-
nite size and surface effects [1-12]. If the interactions be-
tween the fluid atoms and walls favor condensation at both
walls, one observes “capillary condensation” [1,4,10,12],
i.e., the gas condenses to the liquid at a pressure p that
is lower than the pressure p ., for phase coexistence in
the bulk. While this phenomenon has been known for a
long time, recent simulations [5] of two-dimensional (2D)
lattice gas models with opposing one-dimensional bound-
aries, as well as phenomenological theories [6—9] suggest
a new type of transition. Modeling the fluid by a lattice
gas model and using the translation into the language of
an Ising magnet (empty sites correspond to spin up, full
sites to spin down), we find that the opposing walls trans-
late into surface magnetic fields H; of equal magnitude
but opposite sign. For this model a very puzzling and
controversial [8] behavior was predicted from a mean-
field theory [6]: For any finite distance D between the
plates there is a single phase transition belonging to the
universality class of the 2D Ising model but at a tem-
perature T.(D) close to the wetting transition temperature
T,,(Hy) of the semi-infinite 3D Ising model with a surface
field H, [13], i.e.,

Lim 7.(D) = Tw(H)) . (1)

Note that 7,,(H;) may be very far away from the bulk
critical point T.,. Equation (1) is extremely surprising,
since in more standard finite size effects in thin films
(such as capillary condensation, for instance [4]), one
always has a convergence to the critical temperature T,
of the bulk, T.(D — ®) — T,,. In fact, for the present
case of opposing walls, a sharp 3D Ising transition must
also appear in the system for a temperature T = T,
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in the limit D — oo, but it disappears for finite D (i.e.,
it is rounded, qualitatively similar to systems which
are finite in all their linear dimensions [14]). At this
rounded transition an interface between the coexisting
phases is predicted to appear gradually. For T > T.(D)
this interface (which on average runs parallel to the walls)
is expected to fluctuate freely in the center of the thin film,
while for T < T.(D) it becomes localized at (or “bound
to”’) one of the two walls.

Now the situation of two walls with fields H, <
0,Hp = —H, is certainly very special, but it can be
readily generalized to arbitrary ratios of H,/Hp (Fig. 1)
[15]. The transition then occurs at a nonzero bulk field
H >0 (in fluid language this means p < pceex), and
T.(D) can exceed T, (H;). The Ising model can also be
used to describe phase separation of binary (AB) mixtures,
and we speculate that closely related wall effects occur
for much wider classes of phase transitions. For instance,
liquid crystals, mesophases in microemulsions, and block
copolymer systems, etc, are known to be very sensitive
to wall effects; thus, our simple model is a generic case
for an interface localization-delocalization transition in
confined geometry.

In previous work [16,17] the wetting transition of sim-
ple cubic Ising models with exchange J between nearest
neighbors was studied and 7,, was estimated for a range
of values of H,/J by Monte Carlo methods. With a slight
modification of the program the present problem can
be studied as well [18], and Fig. 2 shows the predicted
phenomena qualitatively. The magnetization profile
smoothly develops an interface as one cools the system
from T > T., to T < T.,: The surface fields induce a
local magnetization near the walls (a negative one at the
left wall and a positive one at the right wall) also for
T > T.,. But we expect that the layer magnetizations
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FIG. 1. Qualitative phase diagram of a 3D Ising system in a

thin film of thickness D where surface fields H; < 0 and Hp
act on the surface planes. The bulk critical temperature (7,;)
and the wetting transition of the semi-infinite system {Tw(H;)}
are indicated. The curves show the (first-order) transition (from
gas to fluid), which occurs for nonzero (negative) bulk field if
Hp/H, > —1, while the dots show the critical points of the thin
film. For Hp/H, = 1 one has the situation usually considered
in capillary condensation [4,14].

m, decay exponentially {m, x —|H;|exp(—n/&,) for
n < D/2 and mp—, « +|H{|exp[—(D — n + 1)/&;] for
D — n < D/2, £, being the bulk correlation length of
the 3D Ising model}, as long as D /2 > &,; the two walls
are essentially noninteracting. Near T.,, when D = 2§,
the curvature in the center of the profile changes and a
well-developed interface in the center of the film takes
form. A study of other quantities [15] also corroborates
the conclusion that there is no transition near T, for
any finite D. For T.(D) near T,,(H,), however, one now
observes a. symmetry breaking in the thin film: The
interface between the phases with negative and positive
magnetizations is no longer located in the center, rather
being bound either to the left or to the right wall [there is
an exact degeneracy between these cases for H; = —H,
as shown in Fig. 2(b)]. While for D = 20 T.(D) and
T,,(H;) cannot be clearly distinguished due to our rather
large error bars, for D = 8 and D = 6 we have clearly
observed that 7.(D) < T, (H,), in agreement with Fig. 1
(and the theoretical prediction [6,9] for critical wetting).
An accurate characterization of the transition at 7.(D)
is difficult since the fluctuating, weakly confined interface
for T.(D) < T = T, causes the existence of a huge
correlation length in the directions parallel to the walls.
Parry and Evans [9] predict that this length & varies
exponentially with thickness &) « exp(D/4£,), and hence
susceptibilities such as y,, « (dm,/0H,)r (H, is a field
acting on the nth layer only) should [20] vary as x,, < §|2| ,
for n near the center of the film. (We emphasize that &, is
the true correlation range in a lattice direction.) Figure 3
shows that an exponential variation is indeed observed—
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FIG. 2. Layer magnetization m, plotted versus layer index
n for an Ising lattice of linear dimension L X L X D with
thickness D = 20, L = 128, and two free L X L surfaces
on which fields H,/J = —0.55, Hp/J = +0.55 act. Part (a)
refers to T > T.(D), part (b) to T < T.(D), with J/kgT.(D) =
0.2475 *= 0.0015, while [19] J/kgT., = 0.221659 = 0.000 003.
Curves are only drawn to guide the eye. All lengths are quoted
in units of the lattice spacing.

although the slopes of the straight lines deviate strongly
from corresponding estimates [15,21] of the predicted
values 1/2£&,(T). For example, J/kgT = 0.232 the length
€ extracted from the estimate Iny,,/D = 1/2€ exceeds
&, by a factor of 1.79. Assuming that this characteristic
length ¢ rather than the bulk correlation length &, needs
to be used in the constant w controlling the exponents
of critical wetting [2,16,17], the discrepancy between
simulations [16,17] and renormalization group predictions
[22] possibly could be largely reduced. This discrepancy
(which is possibly due to fluctuation effects) needs further
study. In any case, the large values of ¢) imply that
near T.(D) extremely large L > £) are needed to see the
asymptotic critical behavior, and, due to the associated
critical slowing down, and enormous statistical effort is
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FIG. 3. Semilogarthmic plot of the maximum value of the

layer susceptibility y;®* versus thickness D. Straight lines
indicate the exponential variation. Note that the profile of
Xnn Was symmetrized with respect to the midpoint npyq =
(D + 1)/2, in order to improve the accuracy.

needed. Thus, even using a very efficient vectorized,
multispin coding program, we could only get accurate
information about the critical behavior for rather thin
films, D = 12 (Fig. 4).

For the largest systems with L = 256 as many as
5.4 X 10° Monte Carlo steps/site were used for com-
puting averages, and even this statistical effort yielded
results of moderate quality. Taking the total magne-
tization per spin of the film M [which is zero for
T > T.(D), cf. Fig. 2(a), but nonzero for T < T.(D), cf.
Fig. 2(b)] as the order parameter of the transition at 7.(D),
we analyze the moments {|M|),(M?), the susceptibilities
kT xy = L>D{M?), kgT x' = L>D({M?) — {|M|)?), the cu-
mulant U, = 1 — (M*)/3(M?)?, and the specific heat for
a variety of sizes L near T.(D), desiring to perform a fi-
nite size scaling analysis. For 2D Ising criticality, all cu-
mulants U; should intersect at [14] T.(D) at a universal
value [23] U, (T.(D)) = Ux = 0.615. However, due to
crossover between wetting criticality [24] and Ising criti-
cality, we do not see this Ising behavior. Instead, the
cumulants cross at temperatures T¢ that depend system-
atically on L, as do the corresponding crossing points
Ubcross(L) [defined by U, = ULp = Ucross(L)]. Extrapo—
lating U,oss(L) versus 1/L (Fig. 4), one can see a con-
vergence towards the Ising value for D = 6 and D = 8,
while for D = 12 much larger values of L would pre-

300

065}'

UCI’USS

L=192
L=256 T L=128 L=64 L=L8B L=32
t t t N .
0.01 0.02 003

C!

FIG. 4. Cumulant crossing values U vs L™! (upper part),
for D =6, 8, and 12. Arrow shows the value of the 2D
Ising universality class. Curves are a guide to the eye only.
Where not shown the error bars are smaller than the size of the
symbols. Lower part shows (for D = 6 only) extrapolations
of the temperatures of cumulant intersections as well as of
the susceptibility and specific heat maxima. Arrow (with error
bars) marks the final estimate of J/kzT,. (D), while straight lines

indicate possible extrapolations.

-

0.262 0

sumably be needed to establish the Ising character of the
transition.

Because of these crossover problems, T.(D) can
also be estimated only roughly. Extrapolating the
temperature of the cumulant crossing and the temper-
ature of specific heat and susceptibility peaks versus
L™!/¥@D) — =1 [remember »(2D) =1 in the Ising
model], we obtain J/kgT.(D = 6) = 0.2655 * 0.0002

(Fig. 4). For D =6 sizes L =192 are already
needed to reach the asymptotic Ising region. While
for D =6 log-log plots of (IM|)r—r. vs L and

kgT x(T.), kpT.xl.x are roughly compatible with the
expected power laws [{IM|)y_y o L™AEP)/»@D)= | ~1/8
X(T.) & xha & LYCD/Y@D)< [7/4 " see Fig. 5], our data
for D =6,8, and 12 are compatible with Eq. (1)
[J/kgT (D = 8)= 0.2578 = 0.0002, J/kgT.(D = 12)=
0.2505 * 0.0005, while [16,17] J/kpT,,(H,/J = 0.55)=
0.250 = 0.005]. For D = 12 one sees rather different
“effective exponents,” although there is also a mild curva-
ture of the log-log plot [15]. More powerful techniques
are clearly required in order to deal with this kind of
simulation data in a crossover region.
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FIG. 5. Log-log plot of the maximum of the finite lattice
susceptibility vs L for different film thicknesses D. The straight
line has the slope of the 2D Ising model v = 1.75. The dashed
lines are simply guides to the eye. Where not shown the error
bars are smaller than the size of the symbols.

In conclusion, we have clarified the phase transition be-
havior of thin films with competing walls. Indeed, the in-
terface localization-delocalization transition as predicted
by Parry and Evans [6,9] is the correct scenario. The ex-
ponential increase of the correlation length with thickness
(cf. Fig. 3) does not allow us to study the critical behav-
ior for larger D, however. We expect that in real systems
(where D may be much larger than £,) £ could become
of macroscopic size, and then finite size rounding will
again be a problem. From the exponential increase of the
response function y,, with thickness we have extracted a
new length € characterizing Ising interfaces, which possi-
bly clarifies the controversies about critical wetting.
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