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Theoretical bcc —= fcc Transitions in Metals via Bifurcations under Uniaxial Load
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Pseudopotential models are used to study large strain, axial loading of the alkali metals. Various
bcc fcc transitions are found to be associated with bifurcations from primary to secondary branch
paths, under strict uniaxial load. Theoretically, other systems (e.g. , the P-brasses) are expected to
behave .similarly.

PACS numbers: 62.20.Dc, 61.50.Ks, 64.70.Kb, 81.40.Jj

In recent years, interest in homogeneous, large strain,
nonhydrostatic deformation of crystal lattices has acceler-
ated; see, e.g. , Refs. [1—3] and the citations therein. Here
we examine theoretical bcc fcc transitions in the al-
kali metals under uniaxial stresses in the framework of
a pseudopotential model. Three modes of deformation
under uniaxial loading are studied: one follows a Bain
deformation on a "primary" path of [100] loading (i.e. ,
the crystal structure remains tetragonal), the other two
branch (or bifurcate) from the primary tetragonal path to
a secondary path of body centered (bc) or face centered
(fc) orthorhombic crystal symmetry. This work is im-
portant theoretically because it (a) is apparently the first
in which quantum mechanically based crystal models are
used to study the bcc fcc transitions associated with bi-
furcations among untaxial loading paths of different crys-
tallographic symmetry, (b) displays a thorough analogy
in behaviors of the distinct branch paths and associated
phase transitions, (c) points up the special role of a stress-
free tetragonal state that occurs on each path, coincident
with a local internal energy maximum, and (d) indicates
that the magnitudes of the uniaxial compressive and ten-
sile stresses required to initiate the bcc fcc transitions
in K, Rb, and Cs are about 2 orders of magnitude less
than the "hydrostatic" pressures at which the transitions
are observed. These results thus suggest that the com-
bined effect of a relatively small uniaxial component of
stress "superimposed" on a large hydrostatic compression
could cause a bcc fcc transition well before it would
occur in the absence of the uniaxial component. This is
an important consideration for high pressure experimen-
tation, particularly since the alkali metals, K, Rb, and Cs
exhibit bcc ~ fcc transitions under pressures P ranging
from about 2 (for Cs) to 11 GPa (for K) [4], whereas
some computations have suggested corresponding theo-
retical transformation pressures as high as about 50 GPa
for K and Rb [4] [the computational model used in the
present study exhibits the respective transitions (for K and
Rb) at 37.0 and 25.8 GPa]. In addition, Na and Li un-
dergo low temperature, atmospheric pressure, transitions
from bcc to close packed structures that resemble fcc with
periodic stacking faults [4]. Our results suggest experi-

mentally verifiable effects of variously oriented uniaxiat
stresses on these low temperature transitions.

Branching of a crystal structure under uniaxial load
was first observed computationally by Milstein and Huang
[5], who studied the large strain elastic behavior of a
Morse model of an fcc Ni crystal. They computed the
path describing the mechanical response of the crystal as
it was deformed uniformly under a [110] uniaxial load
and found this path to branch from the path describing
uniform deformation of the (initially) bcc configuration of
the crystal under [100] uniaxial loading. The branching
occurred under "dead" load [6] at a point coincident
with the mutual equality of the (strain dependent) elastic
moduli Cq2 and C23 [7]. The branch point, however,
was found to be embedded in an elastically unstable
region of deformation space (as was the unstressed
bcc state). Milstein and Farber [8] used similar lattice
model computations to study the analogous, but distinct,
branching in which the path, corresponding to the [110]
uniaxial loading of an (initially) bcc crystal, branched
from the path of [100] loading of an (initially) fcc
crystal. There the branch point was found to terminate
an elastically stable region of the [100] loading path,
in tension. Milstein and Farber [8] used theoretical
arguments, supported by these computations, to show that,
for a fcc crystal homogeneously deformed under a strict
[100] uniaxial tensile load, a path of minimum energy
takes the crystal into an unstressed bcc configuration, via
the bifurcation that occurs at C22 = C23. The fcc bcc
transition under uniaxial tension was also observed by
Wang et al. [2] in a recent molecular dynamics study of
an embedded atom model of fcc Au.

The present crystal mechanics computations employ the
Heine-Abarenkov local model potential and the Taylor ap-
proximation for electron correlation and exchange in the
dielectric function. With but two empirical parameters
(which were determined for each of the alkali metals in
Ref. [9]), the model was shown [9,10] to give good de-
scriptions (when compared with experiment) of numerous
properties, including the pressure-versus-volume behav-
ior, the bcc fcc transformations under pressure, and,
at low temperature and atmospheric pressure, the bind-
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ing energy Eb;„d, the density, the elastic moduli and their
pressure derivatives, and the relative phase stability (be-
tween bcc and close packed). The axial stresses tT; and
elastic moduli C;, are computed with the analytic for-
mula derived in Ref. [9] [see Eqs. (A19), (A21), (A36),
and (A37)]. To ensure uniaxial loading, and properly ac-
count for the Poisson effect, at each computational stage
(i.e. , for each value of longitudinal lattice parameter aI),
the transverse lattice parameters a~ and a3 are iterated to
states where o-~ = o-3 = 0; on the orthorhombic paths, a2
and a3 are iterated independently.

Figure 1 illustrates the modes of uniaxial loading
studied here; superscripts b and f are used to identify
quantities reckoned specifically to the bc and fc axes,
respectively. On the primary path, the crystal can be
considered as either bct or fct; if the load "acts vertically"
the bc cells in (a) and the fc cells in (b) are tetragonal
on this path, as are the bold-lined fc and bc cells "to the
left" in the figure. Crystal symmetry and the absence
of transverse loads cause the appearance of three stress
zeros on the primary path, i.e., where fct becomes fcc,
where bct becomes bcc, and at a special unstressed tetrag-
onal state [11]; these respective unstressed structures
are designated F, 8, and T; the lattice parameters in
states F and B (on the primary path) are, respectively,
a~ =a2 =a3 —= a' and a~ =a2 =a3 =—a. On bothf f b b b

the primary and secondary paths, the axial stretches
are AI = at/a" and AI = aI/af, and the transverse
stretches are A; = a; /a" and A; = a; /af (i = 2, 3).
For a crystal in equilibrium with its environment, the
incremental changes in axial loads 6F; following a
6 departure from a given tetragonal state are 6F~ =
CII6aI + CIz(6az + Bas), BFz = CIzBaI + Czz6az +
C236a3, and 6F3 = C]26a~ + C~36a~ + C~26a3, where
C,", —= 8 Fb;„d/Ra; Ba, , reckoned relative to either the
bct or fct crystal axes. If the load remains uniaxial,
F2 = F3 6F2 6F3 0, and a general solution is

a3
]

Baz = Ba3 = [—CIz/(Czz + Cz3)]6aI, with BFI/BaI =
CII —2CIz/(Czz + Cz3), i.e. , the primary path of tetrag-
onal symmetry. However, if the primary path contains
a "special invariant eigenstate" [7], where Czz = C&3 (or
equivalently, Czz = Cz3), the above equations admit bi-
furcation under dead load (BFI = BFz = BF3 = 0) with
6a[ = 0, 6a2 = —6a3, i.e., bifurcation from tetragonal
to orthorhombic under strict uniaxial load. Also, the
primary and secondary internal energy paths are of course
tangent at the branch point.

In the present Letter, the primary path of each alkali
metal exhibits two C22 = C23 states, one on the bct axes
(i.e., Czz = Cz3) and the other on fct (Czz = Cz3); crystalb b f f
symmetry under uniaxial load causes C44 = 0 simultane-

ously with C22 = C23, likewise for C44 = 0 and C22 C23.
f f f b b

Figures 2 and 3 show the relevant C;, and associated
branching behavior of Rb as an example. The "left-hand
branch" (lhb) point for each alkali metal occurs in com-
pression at C22 = C23 for values of A[ in the range 0.951
(for Cs) to 0.964 (for Li); the "right-hand branch" (rhb)
originates in tension at C22 = C23 with A

~ ranging from
1.038 (for Cs) to 1.053 (for Li). Each of these branch
points terminates stable ranges on the primary path.

The lhb and rhb exhibit an interesting one-to-one
symmetrical correspondence. This is made evident from
the following unified discussion, wherein the first entry of
"double entry brackets (. . .k. . .)" describes behavior on or
leading to the lhb and the second . . . the rhb. Consider
a [100] uniaxial (compressivehtensile) load applied to the
initially (bcc(B)hfcc(F)) crystal. The crystal first follows
the primary path in the region (A I

~ 1I, A I
~ I ), with

(Az A3 ) lh Az = A3 ( 1); although both bct and fct
describe the structure throughout this path, let us focus
on the (bchfc) structure illustrated in Fig. 1 (akb). At
the C22 = C23 eigenstate, branching from tetragonal to
orthorhombic, under dead load, occurs with 6at = 0,
(Baz = —6as&6az = —Ba3); with complete generality,b b f f .

assume (6az ( 056az ~ 0). Following bifurcation, 6az
would be expected to vary much faster than 6a], since
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FIG. 1. Two ways of viewing the crystal under uniaxial load:
(a) fc cells (bold lines) in a bc lattice structure, (b) bc cells
(bold lines) in a fc lattice structure.

FIG. 2. Elastic moduli C;, on the primary path versus axial
stretch for Rb; the moduli are reckoned relative to (a) the fct
axes and (b) the bct axes.
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FIG. 3. Behavior on the primary tetragonal (—) and sec-
ondary orthorhombic branch (---) paths for Rb (the upper
abscissa scale on each plot is A~ and the lower is A~): (a) trans-
verse stretch, (b) variation in volume per atom 0 (II& is II in
state B), (c) internal energy, and (d) uniaxial stress.

~
6aq/Ba ~ ~

is infinite at the bifurcation (on the branch
path). Thus, while a ~((aq 5 ~a2 }at the branch point, soon
after branching a~ and (az kaz} become equal; when this
happens, the bold-lined cell in the right-hand portion of
Fig. 1 (ahb} becomes tetragonal, and the magnitude of
the axial load must drop to zero (since the tetragonal
symmetry implies F

&

= F2, and F2 is of course zero);
these unstressed states are identical to the unstressed

state T on the primary path, but differently oriented.
In addition, since the nature of atomic forces causes
the load to be (compressivehtensile} under (small&large}
axial stretch, with still further (decreasekincrease} of axial
stretch, the load F] must pass through a second zero on
the branch path; this occurs coincident with a~ = (a2 =
a3/~2 5a2 = a3 ~2 },i.e., where the bold-lined cell (to theb f f
right) in Fig. 1 (ahb} becomes (fcchbcc} on the (lhbirhb};
these states are identical to the cubic states (F&B}on the
primary path, differently oriented. In particular, cubic
state (FhB} on the (Ihbhrhb} path is seen to be oriented
with its [110] axis parallel to the loading direction, and
thus this path is identical to that of [110]uniaxial loading
of the (fcckbcc} structure.

Three distinct equilibrium paths for bcc ~ fcc tran-
sitions in the alkali metals under uniaxial loading are
therefore (i) the (simplest and most "well-known") Bain
path (i.e. , [100] uniaxial tension on the primary path), (ii)
[100] uniaxial compression which takes the bcc structure
into fcc via the bifurcation to the secondary lhb path at
C22 = CQ3 and (iii) [110]uniaxial compression of the bcc
structure, wherein the initial equilibrium loading configu-
ration is described bp the rhb path, which branches to
the primary path at C22 = C23. (The analogous fcc bccf
transitions are just the reverse paths. ) For a given alkali
metal, the "energy barrier'* (or maximum energy on the
equilibrium transformation path) is identical for each of
the bcc ~ fcc transitions; this maximum occurs at each
state T This is in acc.ord with a recent hypothesis [12]
that the minimum energy barrier for any homogeneous
bcc ~ fcc transition, on an equilibrium path between un-
stressed and elastically stable initial and final states, is
that associated with the unstressed tetragonal configura-
tion that appears on the uniaxial loading Bain path. The
stress barriers, however, are distinct on each path; e.g. ,
for Rb, the theoretical stresses required to initiate the
bcc ~ fcc transformation are 24.7 MPa in [100] tension,
74.8 MPa in [100] compression, and 48.9 MPa in [110]
compression. This has interesting ramifications for Na
or Li in their bcc configurations, at temperatures close to
their bcc close packed transitions. Our results suggest
that the transitions could be induced by either [100] ten-
sion or compression, as well as [110]compression.

Some of the theoretical behaviors displayed in Fig. 3 de-
pend mainly on crystal symmetry and the general nature of
interatomic forces (i.e. , repulsive and attractive at large and
small distances, respectively), while others are sensitive to
the details of atomic binding and hence are model depen-
dent. For example, the general shape of the primary a-~

curve (i.e., three stress zeros) is a result of crystal symme-
try [11],whereas the order of appearance of the unstressed
states B, T, and F on this curve is model dependent. (The
possible existence of four stress zeros would be precluded
by the physical conditions requiring the crystal to be un-
der compression at very small A& and in tension at very
large A~, five zeros are possible, but unlikely. ) The fcc
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state will always reside "to the right" of the bcc state (Al
will always be greater in the fcc state than in the bcc state,
owing to crystal symmetry). Thus, there are three pos-
sible orderings: (1) 8, T, F (as found for the alkalis); (2)
T, 8, F; and (3) 8, F, T Th. e centrally located unstressed
state on the primary path is necessarily unstable, owing to
the falling load characteristic, while either (or both) of the
other unstressed states may be stable elastically, depending
on the values of the elastic moduli in these states. Thus,
systems that possess mechanically stable fcc and bcc struc-
tures (at zero stress) exhibit case (1) behavior. Cases (2)
and (3) allow the existence of stable, unstressed, bct (or
equivalently fct) structures, although case (3) has yet to
be observed computationally. We have also completed
analogous computations for pseudopotential and simplified
pseudopotential models of the noble metals; this work will
be the subject of a full length paper.

Brie]ly, the noble metals exhibit case (2) behavior
(i.e., bcc is unstable); two eigenstates Cq2 = C23 are also
found on the primary path; the state C» = C23 terminatesf f
a stable region in tension (as in the alkalis) but the
C22 C23 state is embedded in an unstable region of
falling load characteristic on the primary path; the general
behavior on the two secondary paths is similar to that of
the alkalis, except the states B and T are interchanged
on the rhb secondary path. The models employed in
these computations are described in Ref. [13]. Suitable
adjustment of the potential parameters can cause these
systems to acquire case (1) behavior, wherein the results
are very similar to those of the alkalis (i.e., both bcc and
fcc are stable and both C22 = C23 states terminate stable
ranges on the primary paths, with the same characteristic
secondary paths branching therefrom). This behavior is of
particular interest because of its applicability to the stable
bcc p-brasses (which also undergo various martensitic
transformations).

In summary, the appearance of the C22 = Cz3 states
on the primary path, while evidently dependent on the
specifics of atomic binding, seems fairly general; if such
states do occur, the salient features of the secondary
branch paths are then largely owed to crystal symmetry
and the general nature of interatomic forces. The theoreti-
cal results suggest various infinitesimal strain phenomena
that may be verified experimentally, including a nega-
tive Poisson ratio in [110] loading of bcc and fcc crystals
(since the secondary path variations of A2 and A3 with A|
are of opposite sign), upward and downward concavities
of the [110] and [100] bcc loading curves, respectively,
and the opposite concavities of the respective fcc loading
curves [the curvatures are evident in Fig. 3(d)]. The neg-
ative Poisson ratios have been verified from experimental
elastic constant data and direct measurement [14,15]. The
loading curvatures apparently have not yet been measured

for the alkali metals, although the [100] and [110]loading
curves of the bcc p-brasses fit the theoretical model [15]
as do those of fcc crystals, in general [14].

Finally, we mention that many investigators (see, e.g. ,

Refs. [16—19]) have computed binding energies on "clas-
sical" homogeneous bcc ~ fcc transformation (e.g. , Bain,
Zener, or Bogers-Burgers) paths that are defined by the
monotonic variation of specific strain parameters. While
there are some obvious similarities between such studies
and ours, the present work stands in contradistinction, as
here it is the loading environment that is well defined and
controlled; without specification of the loads acting on the
crystal, there can be no study of the bifurcation process
(i.e., branching from a primary to a secondary transforma-
tion path, of lower energy and different crystal symmetry,
under the same mode of loading) The .path branchings, in
turn, demonstrate the energetic equivalences and stress di-
vergences on the three distinct bcc ~ fcc transformation
paths, all of which occur under the same mode of loading,
but under different crystal symmetry.
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