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Internal Friction by Pinned Dislocations: Theory of the Bordoni Peak
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The two most prominent internal friction peaks in cold worked metals at low temperature are shown to
be related manifestations of the same nucleation mechanism of kink-antikink pairs in pinned dislocation
segments depending, respectively, on the absence (Bordoni peak) or the presence (Niblett-Wilks peak)
of geometrical kinks (antikinks). Correspondingly, diffusion of the nucleated thermal pairs accounts
for the observed background internal friction. Peak and background components are both computed
analytically and compared with experimental data.

PACS numbers: 61.72.Bb, 81.40.Ef

Almost fifty years ago Bordoni [1] found that fcc met-
als (single crystals or polycrystalline specimens alike) sub-
jected to cold work develop a prominent maximum in
the curve of internal friction versus temperature in the
range 50—100 K. Ensuing investigations led to a detailed
experimental characterization of the phenomenon, which
can be summarized as follows [2,3]. (a) The Bordoni
peak is absent in well annealed samples; its height in-
creases with the amount of cold work for deformations
up to 3% and remains fairly constant for larger deforma-
tions. (b) Annealing after cold work reduces the height of
the peak (more markedly on the high-temperature side) but
does not eliminate it until recrystallization occurs. (c) The
temperature T~ of the peak maximum increases almost log-
arithmically with the vibration frequency, as expected if
the peak were the signature of a thermally activated relax-
ation process. (d) The height of the peak is reduced by the
presence of impurities and by massive neutron irradiation;
T& is not affected significantly in either case.

The shape of the Bordoni peak has been baffling both ex-
perimentalists and theoreticians since. Its width is several
times larger than that corresponding to a single relaxation
process. In addition, there is a subsidiary peak (sometimes
just a shoulder) at lower temperatures often referred to as
the Niblett-Wilks (NW) peak [2]. The observation that the
NW peak decreases almost proportionally with the Bordoni
peak, e.g. , during annealing, indicates a close relationship
between the two peaks.

Items (a) —(d) are all suggestive of a dislocation mecha-
nism [4] at work. A dislocation segment which lies along
a Peierls valley can overcome the relevant confining barri-
ers (quantified by the Peierls stress o.p) only by nucleating
a kink-antikink pair. Nucleation is a thermally activated
phenomenon and contributes to the internal friction with a
Debye peak, the frequency constant which coincides with
the nucleation rate in the dislocation segment. Such a
model was introduced first by Seeger and Schiller [5].
Refinements [4—8] of the original theory did not help dis-
pell a few serious criticisms to the model, namely [3,4],
(i) the theory predicts a dependence of Tt& on the vibra-
tion amplitude, which was never observed experimentally;

(ii) the width of both the Bordoni and the NW peak could
not be reproduced by a single nucleation process; (iii) a
substantial fraction of the dislocation network is known
to contribute to the Bordoni relaxation [3,7], at variance
with the idea that only dislocations parallel to the Peierls
valleys are involved; (iv) no relation between main and
subsidiary peaks it envisaged; and (v) the theory omits an
explanation of the rise in the background internal friction
which follows both peaks [7].

In the present Letter we develop an analytical treatment
of thermal relaxation in a pinned dislocation segment.
Application to the internal friction problem leads us to a
natural interpretation of the Bordoni peak, thus accounting
for all items (i)—(v) without unnecessary assumptions.

We agree to represent the position of a dislocation line
in its glide plane as a sine-Gordon (SG) string P(x, t)
coupled to an equilibrium heat bath, that is [4,5],

@„—cp@„+- a&p sing = —a@, + j(x, t), (1)
where co and coo

—= 2~vo are the parameters of the unper-
turbed SG equation, the sinusoidal potential —

a&p cosP
models a system of parallel Peierls valleys, n denotes the
damping constant, and the Gaussian noise g(x, t) has zero
mean and correlation function

(g(x, t) j(x', t')) = 2nkT 6(x —x') 6(t —t') . (2)
If a dislocation line is pinned between two points,
e.g. , at x = 0 and x = l, each lying at the bottom
of two Peierls valleys, then @(l, t) —@(0,t) = ~2vr~m~,
with m = 0, ~1, ~2. . . , and the corresponding dislocation
segment of length l is said to bear m geometrical
kinks @+ or antikinks P, depending on the signs
respectively. Throughout this Letter we assume that the
half-width of P, d = c&&/top, is small compared with
the average separation between their centers (dilute gas
approximation) [9]. It is well known that, due to the
perturbation on the right-hand side of Eq. (1), a single
kink (antikink) behaves like a quasiparticle of rest energy
Ep = 8a&pcp (i.e., mass Ep/cp) subject to a Brownian
motion with diffusion constant D = (kT/Epn)cp [9,10].
Let us restrict ourselves to the underdamped limit a «
a&p, [11] as indicated by both theory [12] and direct
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measurements [13] of the dislocation viscous forces. In
such a limit a kink and an antikink approaching from
infinity will eventually pass through each other with a
small fractional energy loss 6(u) = vr2o. /cup, whereas
two kinks (antikinks) bounce off one another almost
without dissipation [11].

Before proceeding any further we remind the reader
that, to make contact with a real dislocation, lattice units
must be restored in Eq. (1), i.e.,

a P/2', c C/vr pa2,p (3)
happ 2o pb/pa, n B/gapa

where a is the lattice constant, b is the Burgers vector,

p is the density of the material, B and C = Gb are
the viscous and the tension forces per unit of dislocation
length, respectively, and G is the shear modulus. In
passing, we also note that the coupling of the lattice
phonons with the highly nonlinear core of the dislocation
line is responsible for the temperature dependence of B
[12], i.e.,

~(T) = ~(0) + y(kTIEp).

In the temperature range of interest, here n(0) can be
neglected and y determined experimentally [13].

Internal friction in a sample subjected to a small
periodic external stress with frequency v = cp/2m is
defined by the ratio A(cu, T) of the energy lost per radian
to the maximum stored energy [3,4]. The microscopic
dissipation mechanism is due to the damped dislocation
segments bowing out in the direction of the on-plane
perpendicular component o.(t) of the applied bias. At
high temperatures kT» Fp, we can approximate 0-p = 0,
thus recovering the vibrating string model by Granato
and Liicke [14]. The Bordoni peak, instead, occurs for
kT «Fp, so that the Peierls potential plays a crucial
role. Indeed, a SG string under the action of the bias
F = abo(t)/2~ —bow. s out according to two distinct
mechanisms, pair nucleation and kink (antikink) diffusion,
as explained below.

Pair nucleation. —Thermal noise generates kink-
antikink pairs even in the absence of an external bias
[9—11], as proven by the fact that at low temperatures the
density of thermal kinks (antikinks) [15]

"~= (-.')'"-,'(;,l'"- (-:;)
is independent of both F and m. On the other hand,
the bias F pulls @ apart by exerting opposite forces
~27rF/cp on them [9]. As a consequence, the nucleation
of an additional pair at thermal equilibrium makes the SG
string shift an average distance 7r in the direction ofo(t).
[We recall that in the units of Eq. (1) 27r denotes the
intervalley spacing. ]

Kink (antikink) diffusion. —Diffusion of a single un-
derdamped kink (antikink) from one pinning point to the
other causes the SG string to advance by a quantity 2~.

I „=l(n+ + n )/7p ——(nD)'t (n~ + n ). (7)

It will be shown later that the nucleation and diffusion
of thermal kinks (antikinks) is responsible for the peak
and the background component of the internal friction,
respectively. The relevant frequency constants can be
derived from Eqs. (6) and (7) and rewritten as [see
Eqs. (4) and (5)]

va(T) = I „/2m.

= vB[1 + m/ln(T)]exp( —2Ep/kT),

with vz = 4(l /d) (y/cup) 't vp and

vb(T) = r„/2~

(8)

= vb[1 + m/21n(T)]exp( —Ep/kT), (9)

with vb = 2(2/vr) 't2 vp. Note that at variance with
Ref. [5], v~ and vb do not depend on the amplitude of
the periodic bias tr(t) [see item (i) above]. Moreover,
both vz and vb are independent of the temperature as
suggested first by Bordoni and co-workers [1]. The tem-
perature dependence of the attack frequencies in Eqs. (8)

Because of the collisional properties mentioned above,
this holds even in the presence of a gas of kinks and anti-
kinks, each gas component being related here as if it
were made of indistinguishable quasiparticles [10,11]. Of
course, F selects shifts in the direction of o(t) .

A. ctu-
ally, the diffusion process involves geometrical and ther-
mal kinks (antikinks) alike. However, the former ones, in
view of their reduced mobility as a whole, simply gen-
erate the internal friction component already predicted
by the vibrating string model [16]. At low frequencies
such a component is small [17] and exhibits a weak T
dependence [14], so that it can be easily subtracted [7].
The contribution of thermal pairs, instead, depends on T
through the density function n(T) and is not quenched by
geometrical constraints.

We now calculate the frequency constants for both
relaxation processes in a pinned dislocation segment
of length l bearing m geometrical kinks (antikinks) by
generalizing the approach of Ref. [11]. Let n (T) denote
the total density of P in the SG string. An underdamped
kink (antikink) @ diffuses a root mean square distance
[n2 6(n)] 't2 before annihilating in a time interval r . In
the same time interval an underdamped Brownian particle
would diffuse a root mean square distance (nD)'t ~
where the kink (antikink) lifetime r = [n6(n)n —]
The pair nucleation rate over the entire string length is
then readily written as

I „=l(n~/r+ + n /r ) = 2l[nDB(n)]' n+n . (6)

Accordingly, the time 7.p taken by a kink or an antikink
to diffuse a rms distance equal to the string length l in
the underdamped limit is rp = l/(nD)'t~ where the total
diffusion rate of kinks and antikinks towards the string
pinning points is
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and (9) is determined by the interaction of thermal and
geometrical kinks and antikinks. The ratio vs/vb can
be easily expressed in terms of the lattice constants, i.e.,

vg/vb = (I/d)(y/vo)'
The calculation of the internal friction in terms of

the microscopic relaxation constants (8) and (9) is now
straightforward. The formalism of Refs. [4,6,18] can
be easily generalized to account for both relaxation
mechanisms. That leads us to the following expression
for the internal friction generated by a dislocation segment
of length L bearing m geometrical kinks (antikinks):

~~ (v, T) = ~o(T)~'
v vs(T)"+ .'(T)

+ 2
v vb(T)

v + vb(T)
(10)
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FIG. l. Example of the peak (curve 1) and the background
component (curve 2) of the internal friction for reasonable
values of the lattice parameters (lightly cold worked copper
[19]). The scales hq and T& are discussed in the text.

with b,o(T) = a b Gn(T)/4kT
Finally, we must add up the contributions from each

segment in the dislocation network. This can be done by
first averaging A~ over m for a given value of l and, then,
integrating the result thus obtained against an appropriate
distribution P(l) of the segment lengths. For simplicity,
we assume here that all orientations of a segment of
length l are equally probable, with the restriction that
the segment cannot bear more than a maximum number
M~ of kinks (antikinks), lest it becomes unstable towards
unpinning [17]. Furthermore, we adopt the most popular
expression for P(l), that is P(l) = (A/L2) exp( l/L), —
where L is the average segment length and A is the
dislocation density or dislocation line length per unit of
volume. Recall that A depends strongly on the treatment,
thermal and mechanical, undergone by the sample.

In Fig. 1 we plot separately the peak As(T) and the
background component b, b (T) of the internal friction
versus temperature for v = 1.6 X 10 Hz and the lattice
parameters of copper [19]. Far from trying the best fit of
any particular set of experimental data, we limit ourselves
to a few general (and concluding) remarks.

A&(T) exhibits a main peak for T& = 70 K and a side
peak of relative height 0.3 at T~~ = 50 K. The two
peaks appear simultaneously upon averaging over m. The
physical meaning of this result is clear: The main peak
(the Bordoni peak) originates from pair nucleation in
the presence of the low density of geometrical kinks
(antikinks), such as in Seeger s theory; the subsidiary
peak (to be interpreted here as the so-called Niblett-
Wilks peak) is revealing of a geometrical kink (antikink)
controlled nucleation process, whose effective activation
energy, not surprisingly, is of the order of half the Bordoni
energy [19].

The peak structure of Fig. 1 is about 20 K wide, fairly
irrespective of the averaging constants Mi and L. This
is quite an improvement with respect to earlier theories
[2—4]. At present it is still unclear whether the width of
As(T) can be further increased to match the experimental
values (35 K or more) through more realistic averaging
procedures, or we must advocate additional contributions
from other types of lattice dislocations with slightly
different activation energies [5,7]. This question is a
matter of ongoing research.

The background contribution h, b(T) presents a striking
resemblance to Thompson and Holmes' experimental data
(see Fig. 15 of Ref. [7]). The residual internal friction
rises sharply immediately after each peak of Az(T) (see
Ref. [7] for a physical interpretation of this phenomenon).
Both jumps in Ab(T) occur on an energy scale of the
order of the kink rest energy [4]. Note that no adjustable
parameter in the present theory allows us to shift Ab(T)
along the T axis relative to As(T)

The maximum number of geometrical kinks (antikinks)
which can be accommodated in a dislocation segment of
length l without generating internal stresses due to their
mutual repulsion [6] is Mi = l/2d. We verified that,
when averaging Eq. (10) with respect to m, the amplitude
of the Bordoni peak relative to the background is almost
independent of Mi for MI ~ 0.4M~. On decreasing Mi
below that value the rising branch of Ab(T) fades away
first, thus making the Bordoni peak shoot up from
the background. For Mi ( 0 2M~ As(T), too. , becomes
sensitive to the choice of M~. This means that as much
as 20%—40% of the dislocation network contributes to a
certain extent to the Bordoni relaxation, in agreement with
earlier experimental studies [3,7].

The ratio of As(T) to Ab(T) is approximately inversely
proportional with L; see Eqs. (8)—(10). The values of
Mi (= 0.6M') and L (= 10 cm) adopted in Fig. 1 are
fairly adequate for the lightly cold worked samples tested
in Ref. [7]. Larger amounts of cold work are expected
to diminish both L (i.e., modify [18]) and Mi/Mi, thus
making the Bordoni peak grow more pronounced [15,20].
Finally, we remark that the Bordoni peak height 5& ——

5 x 10 ', reported in Ref. [7], can be reproduced in the
present formalism by choosing a dislocation density A in
the range of 10 —10 cm
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