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Stability Analysis of Resistive Wall Kink Modes in Rotating Plasmas
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The stability analysis of external magnetohydrodynamic modes is carried out for a cylindrical plasma
in the presence of a resistive wall, plasma flow, and coupling to the sound wave continuous spectrum. It
is confirmed that the resonance of the mode with the sound continuum produces an effective dissipation.
The combined effects of dissipation and plasma Aow open up a window of stability to the external kinks.
This theory can explain the numerical results of A. Bondeson and D. J. Ward [Phys. Rev. Lett. 72, 2709
(1994)].

PACS numbers: 52.35.Py, 52.30.—q, 52.35.Dm, 52.55.Fa

The stability of magnetohydrodynamic (MHD) external
modes is an important requirement for the high-P opera-
tion of future tokamak experiments such as the tokamak
physics experiment (TPX) and the international thermonu-
clear experimental reactor (ITER). Theoretical calculations

[1] have shown that values of Ptt —4 —5 are achievable
only if ideal external kinks are stabilized by a perfectly
conducting wall. However, because of the finite resis-
tivity of the wall, it has long been thought that an exter-
nal mode (the resistive wall mode) would persist, growing
on the resistive wall diffusion time [2—9] (as long as the
ideal MHD marginal condition with the wall at infinity is
violated).

Recently, however, Bondeson and Ward [10]presented
numerical calculations indicating that a combination of
toroidicity and plasma rotation opens up a window of sta-

bility against both the resistive wall and ideal kinks. Here,
a window refers to a range of b/a (wall radius/plasma
radius) at fixed plasma parameters. In this Letter, we
present an analytic theory describing the "stability win-

dow, " essentially confirming the conjectures of Bondeson
and Ward [10], and we show that the existence of the
stability window requires both plasma rotation and a dis-
sipation mechanism [11,12] such as resonant interaction
with a continuous spectrum (sound or Alfven).

Toroidicity is important to increase the magnitude of
the dissipation, but is not necessary for the existence of
the physical mechanism [11]. Thus, for simplicity, the
stability analysis is carried out for a straight cylindrical
pinch described by the ideal MHD model, where the main
dissipative mechanism is the mode resonance with the
sound continuum. We show that, for sufficiently large
dissipation, the size and characteristics of the stability
window are independent of the source and magnitude of
the dissipation. This result can be easily extended to
toroidal geometry where the dissipation has been shown
to be much larger than in a cylinder [11]. Interestingly,
the stability window in b/a at fixed plasma parameters
transforms directly to a corresponding window in P when

b/a is fixed. However, to gain access to the high-P stable

window, one must first pass through a window of unstable

P 's as the plasma is heated. In principle, sufficiently rapid
heating is required to quickly pass through the region of
unstable P.

We begin our analysis with the external kink dispersion
relation in the presence of a resistive wall [2—9],

6W
(BW b/6W ) + (i/tor g)

1 + (t/tor g)

r = 7 d [1 (a/b) ]/2m, rd = podb/ rI is the resistive
wall diffusion time, BW, = 2~ Roa F.'lg. l'/polml is

the vacuum energy with the wall at infinity, 6W &
=

BW [1 + (a/b) ]/[1 —(a/b)2 ] is the vacuum energy
with the wall at b and g = tanhAd/Ad. The approxi-
mate values correspond to the limit kb « l. Here, k is
the wave number along the cylinder axis (k = —n/Ro),
m is the poloidal wave number, a is the minor radius,

Rp is the major radius, b is the wall radius, d is the
wall thickness, F = kB, + mBe/r =

k~~ B, F = kB, —
mBq/r, ko = k + m /r, g is the mode radial displace-
ment, and A = Q itopo/ri —Furthermo. re, Eq. (1) has
been derived assuming Ab )) 1. Equation (2) shows that
the evaluation of 6L requires the value of the plasma dis-
placement and its derivative at the plasma-vacuum inter-
face. The evaluation of (rg'/$) is in fact the main goal
of the analysis.

To derive the mode eigenfunction in the plasma,
consider an ideal plasma, Aowing along the z axis with
velocity U = ARo (II is the rotation frequency). We treat
the important regime where 0, is much smaller than the
Alfven frequency, and we use the standard radial equation
for the perturbed magnetic Ilux 'P = rg given in Ref. [3],

d d+
A(r) —C(r)%' = 0, (3)

Here 6L is the MHD Lagrangian including potential plus
kinetic energy
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cu2 = F~/ppp is the Alfven frequency,
0.Skag(V, + V~) [1 ~ v'I —n2] are the fast and slow
magnetoacoustic frequencies [a2 = 4V2~2/ko(V2 +
V, ) —e P « I, a =a/Ro], cu =co+ nII is the
Doppler-shifted mode frequency, co2 = co2V2/V2, cuz =
cu2V~/(V2 + V~), and G = mB, /r —kBg. We con-
sider external modes, for which F(r) never vanishes
inside the plasma, having a frequency on the order of
the plasma rotation frequency (cu —A). The sound
frequency is assumed to vanish at the plasma edge
[cog(a) = &oh(a) = ~,(a) = 0] and has its peak value at
the center of the plasma column satisfying co, (0) ) or, .
For a marginally stable mode (co; = 0), the function A(r)
vanishes only at the radial position rp, where ~h(ro) lcd „
and the eigenfunction g(r) becomes singular. At such a
location, the mode resonates with the sound continuum
and thus loses energy by the excitation of sound waves.

In our analysis, we assume that a —e P « 1. We
expand ~2, A, C, and the eigenfunction W in powers of
6 = n2/4 « 1 ('P = Wp + 6'P~ . ). To lowest order,
the eigenfunction equation reduces to

d - O'Pp
A —[C) + Cq) Wp = 0, (6)

dl" dP

where rA = p(cu2 —su~)H, C2(r) =2kBOGH/ppr, H =
(V, + V, )/(cof —cu ), and C~(r) is the regular part of
the first three terms on the right-hand side of Eq. (5).
Equation (6) is regular for 0 ( r ( a and in the limit of
small P is identical to the standard eigenvalue equation for
Alfven waves [3]. However, because of the singularity
of Eq. (3) at r = rp, we retain the first order correction
to the eigenfunction (W~), which is only important for

2 =co = coh = cu, . Near the point of resonance,

M ln

'Pi(r = ro) = z, o. log[(1 —6) ~, (r) —cu ], (7)(~,')',„
where

2 kB,G V2 + V2

p F2 p2
'

Wp

Observe that for a purely real eigenfrequency, "P& has
a logarithmic singularity at rp. However, if the mode
has a finite growth rate, the eigenfunction is continuous
throughout the plasma. A general quadratic form can
be derived by multiplying Eq. (3) by 'P and integrating
over the plasma volume. Assuming ~; ) 0, we find
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M ~ 7T M kp

I ~, I [~f'],„ Iro(~,')'I.„F' . ko

B'(ro)
B (a) V + V „ Ig(a)I~

(10)

The real part of a$,'/g, can be calculated perturbatively by
ordering cu /~, —e && 1, and expanding the eigenfunc-
tion in powers of (E, 6); P = Pp + E Po + 6 P~ +
Because of the self-adjointness of the MHD operator, the
calculation of Re(ag,'/s, ) to first order in (e, 6) requires
only the zeroth order eigenfunction Wo = rgp which sat-
isfies the well-known equation [f(r) gp]' —g(r) $o = 0,
where f(r) = prcu2/kp, and g(r) is given in Ref. [3].
Combining these results leads to the desired expression for
aW.'/F. :

where cuF = BW~/KM, BWF = 277 Rp f dr [fIg Io+
gIspI'], cop = 2~'RoF.'Ig, I'/p, pko(a) KM, and

a

p kp

2 2 /

+ pr 2 r 2 IFoI
kpp 1 2 p

kpr2 k() r2

KM = 2~Rp2

(12)

The imaginary term in Eq. (11) is new and, as will be
shown later, is responsible for the existence of the stability
window.

Using Eqs. (1), (2), and (11),we can write the dispersion
relation as

2
CcP b +

(13)

where cob = 6W, b/KM and cu = BW /KM are the vac-2

uum frequencies with and without the wall, cuF = cuF +
(2' RpFF/ppkpKM), Is, I

is the frequency correspond-
ing to the complete quid potential energy, and ~& =
—coo Im(a/, '/g, ) is the new dissipative term. The interest-
ing regime is ~F ~ 0, which is required for an instability to
occur. Since the imaginary part of 6L has been derived in
the limit co; ~ 0, Eq. (13) is only valid near marginal sta-
bility. The dispersion relation in toroidal geometry has a

that the eigenfunction and its derivative at the plasma
vacuum interface satisfy the relation ["P A(r) W'], = (1 +
a s,'/g, ) aA(a) I $, I, where

ag,' J;[AI%"'I' + CI+I"-]dr= —1 +
aA(a) Is. I'

Since A and C are complex functions, ag,'/g„has both
a real and an imaginary part. Because of the singularity
of W~ at the point of resonance with the sound continuum,
the imaginary part is finite even in the limit of ~; 0.
Substituting Eq. (7) into Eq. (9), the lowest imaginary part
of ag,'/$, can be written in the following form:
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wall (cu„= co„& « I/r„, ) is stable if its total Iluid energy
(potential + kinetic) is less than the vacuum energy with
the wall at infinity. The physical interpretation of the
second marginally stable point [Eq. (15)] is less intuitive
than the others. A perturbative analysis of the dispersion
relation about the three marginally stable points shows that
the external kink is unstable for cu —n A ~ —cuF ~
~& —n 0, and —~F ) ~&. Consequently, a stability
window in cuF (which is proportional to P) exists for

(17)M —nn ~ —M (ccP

For the interesting case of an equilibrium unstable without
the wall, this is both a necessary and sufficient condition
for stability.

The second marginally stable point can be interpreted as
follows. As the potential energy increases (—cuF & ~
n 0 ), there is enough energy to induce the rotation of the
mode (~~„~ & )or„~ (). Increasing mode rotation reduces the
dissipated energy (in fact coo = 0 when the mode rotates
with the plasma). However, as the rotation frequency
becomes larger than the inverse wall time (~cu,2~ ~

&& 1),
the resistive wall behaves like a superconducting wall
and the mode is stabilized (ac wall stabilization). By
keeping the plasma parameters fixed and the total fIuid

energy above the minimum value required for instability

(—cuF + n fI, ) ~„), Eq. (17) also describes a stability
window in b/a By de.noting as b, the wall position
corresponding to ideal marginal stability [~q(b = b;) =
—~F], and as b„ the one corresponding to resistive wall
marginalstability [coq(b = b„) = —cuF + n I1 ], Eq. (17)
shows that any wall position satisfying b, ~ b ~ b; is
stable to both the ideal and resistive modes. By assuming
that b; —b, « b;, the following approximate formula
relating the plasma rotation frequency and the amplitude
of the stability window can be derived for the cylinder, or
large-aspect-ratio circular torus:

b; —b„(m —1) ~ 1 —(a/b;)2
b; 2m (a/b;)

nA

/u~~ (a) V. f

(18)
In deriving Eq. (18), the simple trial function

$,(r/a) ' has been used to estimate KM. Equation (18)
is only an estimate of the size of the stability window. Ob-
serve that the amplitude of the stability window is sensitive
to the magnitude of the parallel wave number at the plasma
edge [k~~ (a)]. A more accurate evaluation of b; —b, re-
quires the numerical solution for go(r) and subsequent cal-
culation of the kinetic energy KM. Furthermore, there is
a critical minimum rotation frequency (0,) below which
the window does not exist. The magnitude of A, depends
on the dissipation and satisfies the following equation:
~A, r = (p + I)'+'/(v" cuoo). The latter has been de-
rived for Ad « 1 and cuDO scaling as co, , where v = 3 fora
dissipation induced by sound wave resonance in cylindrical
plasmas. Observe that 0, ~ for ~DO 0. A simple
check of the analytic theory with the numerical simulation
can be performed by comparing the size of the stability
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form and properties similar to the ones of Eq. (13). In par-
ticular, cuF is negative for unstable modes, KM is positive,
and coo vanishes for co, = —nA. Furthermore, as shown2

in Ref. I I 1], the dissipative term coo is larger in toroidal
geometry by a factor I/e, although it is still small com-
pared to the real terms. Thus, we can solve the dispersion
relation for arbitrary cuz and cuF, without making specific
reference to their cylindrical representation.

Depending upon the magnitudes of the dissipation,
plasma rotation, and wall diffusion time, we identi-
fied two regimes where the dispersion relation can
be solved analytically: (A) the small dissipation
and large rotation regime 02/coo » 1, 1 « b/d «
I/cuoo « (A~ b/d)'~ and (B) the thin wall and large
dissipation regime 1 « I/cuoo « Ar « b/d. Here
ct)~o = coo (co& = 0)/(ct)g cu ) is a dimensionless form
of the dissipated energy. Regime (A) is appropriate for a
cylindrical high-P plasma. The solution of the dispersion
relation at marginal stability yields three values of the
eigenfrequency. The first is a very low frequency mode
with co„i7 = cooo « 1. The second and third have
oscillation periods larger than the wall diffusion time
cd„2T~ = —sgn(A) (rd/2r ) (d/b) (I/cozo), co„3 —— nA. —
In regime (A), the value of the low frequency root (cu„&)
is so low that a dispersion relation valid for Ab ( 1 is
required for that root. However, the stability window (as
shown later) occurs between the marginally stable points
corresponding to cu, 2 and co,3. Thus we omit a lengthy
calculation for the less important root co, i.

Consider the next regime (B) which is typical of a
toroidal high-P plasma surrounded by a very thin wall.
All three marginally stable eigenfrequencies satisfy the as-
sumptions leading to Eq. (1). After some straightforward
manipulations, the imaginary part of Eq. (1) yields the fol-
lowing values for the eigenfrequencies: co,]r
cu, 2r~ = —I/cozo, and co,3 = nA Sin—ce id. entical con-
siderations apply to regimes (A) and (B), no distinctions
between the two need be made in the marginal stability
analysis that follows. It is easy to show that ~cu„~~ &&

l~r21« l~r31, l~,-il «I/r, I/r « l~r21« ~&, and
cu, 3 = —nA, . The first root co, ] represents a mode es-
sentially locked to the wall, the third root co,3 represents
a mode locked to the plasma and the second root rep-
resents a mode that is tied neither to the wall nor the
plasma. The marginal stability conditions corresponding
to the three frequencies are easily derived from the real
part of Eq. (13). A short calculation yields

cu„= o)„) cu + cuF —n fI = 0, (14)
~„= cu„2 au~2 + cuF2 —n fl = 0, (15)

M„= CO 3 COb + MF = O. (16)
Observe that Eq. (16) represents the ideal marginal

stability condition with the wall at b and can be explained
by noting that a mode rotating at a frequency ~, = —n 0
would not dissipate energy (cuD = 0). Therefore it is
identical to an ideal mode in the absence of rotation and
dissipation. Equation (14) shows that a mode locked to the
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window illustrated in Fig. 1 of Ref. [10] and the one ob-
tained using Eq. (18). For the parameters ARD/V, = 0.06,
q, = 2.55, n = 1, and b; = 1.7a, Ref. [10) shows a sta-
bility window of approximately (b; —b„) = 0 17b.; F.or
the same parameters and for m = 3 (m = 3, n = 1 is the
obvious cylindrical mode to be compared with the toroidal
n = 1 external kink when q, = 2.55), Eq. (18) yields asta-
bility window b, —b, = 0.15b;, in reasonable agreement
with the numerical results.

Figure 1 shows the effect of the wall time and plasma
dissipation on the size of the stability window for an n = 1,
m = 3 mode and a cylindrical plasma in regime (A). The
rotation frequency is very large, the wall time is very long
and the dissipation is artificially increased. Observe how
the window widens as the dissipation and the wall time
increases. Because of the small dissipation in a cylinder
(tool, ~, l

= 0.0009caF), a very large rotation velocity and
long wall time are needed to open up the stability window.

Figure 2 shows the stability window for an n = 1,
m = 3 mode and a set of realistic equilibrium pa-
rameters (similar to the ones of Ref. [10]) and values
of the dissipated energy typical of a toroidal plasma.
The dissipation in toroidal geometry [11] is larger be-
cause the singular part of the eigenfunction scales as

P (instead of e2P). This can be shown by deriving
the Alfven wave equation in toroidal geometry and
retaining only the singular terms. In toroidal geo-
metry, f(r) = pr [co,„, —II,(,1

—A, i +,1], where
0, ,( )

= (AEco, ( )
—Aco) /(co, ( )

—co ) and AE =
(v, /R) + (RA2/2v, ). Observe that the eigenfunction is
singular where f vanishes. Since co2/co2 —P (( 1, there
are at least two singular points due to the sound wave
resonance at co,(,~

——cu and cu, („,+, )
——co, and it can2 = —2 2 = —2

be easily deduced that the singular part of the toroidal
eigenfunction scales as P. Including the multiple reso-
nances of toroidal sidebands with the sound as well as the
Alfven wave continua, the dissipated energy for a toroidal
high-p plasma scales as cool„,„,l —(N/e ) cool, ,l, where
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FIG. 1. Plot of the normalized growth rate y~d versus the wall
position b/a for an n = 1, m = 3 mode in cylindrical plasmas
with q, = 2.55, 0 = 0.08V /Ro, II = 4kii„, (a) V, (0),
cuF = —I. icy~, b; = 1.7a, and ~„= 10-'/A (solid curve). The
wall time is increased up to 106/II (dotted curve) and the
dissipation is increased 50 times (dashed curve).
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FIG. 2. Plot of the normalized growth rate y~d versus the wall
position b/a for an n = 1, m = 3 mode, A = 0.06V, /Ro =
kii,„(a)V, (0), and id = 10 /A. The dissipated energy is typical
of toroidal plasmas: coo2(co„= 0) = 0.01coF2 (dashed curve) and
cuo2(cu, . = 0) = 0.05cuF2 (solid curve).
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N is the number of resonances. In Fig. 2, the dissipation
is varied from too(to„= 0) = 0.01coF (dashed curve) to
coo(co„= 0) = 0.05coz (solid curve). Observe how the
window size is weakly dependent on the magnitude of
the dissipation when the latter is sufficiently large. This
result is in agreement with Eq. (18) which is independent
of the dissipation.

We have presented an analytic theory demonstrating the
existence of a stability window (in b/a and P) against
external kinks surrounded by a resistive wall.
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