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Conservation of Magnetic Helicity during Plasma Relaxation
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The change in magnetic energy and magnetic helicity has been measured during the sawtooth
relaxation in the Madison Symmetric Torus reversed-field pinch. The larger decay of the energy
(4.0%—10.5%), relative to helicity decay (1.3%—5.1%), modestly supports the helicity conservation
hypothesis in Taylor's relaxation theory. However, the observed helicity change is larger than the
simple magnetohydrodynamics prediction. Enhanced fluctuation-induced helicity transport during the
relaxation is observed.

PACS numbers: 52.30.Jb, 52.25.Gj, 52.55.Hc

Magnetic helicity [1] is a measure of the "knottedness"
of magnetic field. It is an invariant within a Aux tube in a
perfectly conducting plasma. In 1974 Taylor conjectured
[2] that in a "slightly" resistive plasma the tota/ helicity
is well conserved during plasma relaxation in which
the magnetic energy decays toward a minimum-energy
state. This well-known hypothesis has been successful [2]
in explaining magnetic structures in laboratory plasmas,
such as the reversed-field-pinch (RFP), spheromak, and
multipinch. It has also been applied to relaxation in
tokamak [3,4], magnetospheric [5], and solar [6] plasmas.
The conjecture has been extended theoretically [7] and
studied through nonlinear MHD computations [8—11].
However, to our knowledge, this rather well-accepted
conjecture has received little experimental test. Helicity
conservation has been inferred by applying the helicity
balance equation to a spheromak [12] and in the RFP [13].

In this Letter, we report an experimental investiga-
tion of the magnetic helicity and energy evolution dur-

ing plasma relaxation in the Madison Symmetric Torus
(MST) RFP. The test of Taylor's conjecture is possi-
ble since relaxation occurs in the MST as events which
are discrete in time (corresponding to the 100 p, s crash
phase of a sawtooth oscillation). We find that during
the relaxation event the magnetic helicity decreases by
1.3 —5.1%, while the magnetic energy decreases by 4.0—
10.5%. (Smaller helicity decay corresponds to smaller
energy decay. ) Hence the helicity conservation conjec-
ture is modestly well satisfied in that the helicity decay is
less than the energy decay by a factor of 2—3. Interest-
ingly, the relatively violent sawtooth crash only dissipates
a small fraction of the magnetic energy (presumably con-
strained by the relative conservation of helicity). How-
ever, the helicity decay is greater than that expected from
simple resistive MHD arguments.

The gauge-invariant definition of the total helicity in
a toroidal plasma is given by [14] K —= f A BdV—
4~(a)40(a) where A is the vector potential, B is the
magnetic field, &b~(a) is the total toroidal flux, C e(a) is
the poloidal Aux threading the central hole of the torus,
and the integration is over the plasma volume. Taylor
evaluated [2] a relaxed state by minimizing the magnetic
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FIG. 1. (a) Ensemble-averaged toroidal flux 4 & (a), pinch
parameter 0, reversal parameter F, and voltage across the
toroidal gap in the shell Uz(a) during one sawtooth cycle. The
ensemble consists of 150 sawtooth oscillations. (b) Plasma
trajectory during one sawtooth cycle. The BFM (Bessel
function model) curve is the locus of predicted minimum
energy states.

energy W = j(B /2po)dV, subject to the constraint of
constant helicity. The resulting field satisfies the equation
7 X B = AB, where the current to field ratio A —= p,oj-
B/B2 is a spatial constant. The Bessel function solutions
to this equation (referred to as the Bessel function model,
BFM) approximate well the measured fields in the RFP,
except that in experiments A falls to zero at the edge.

The MST [15] is a large RFP device (R = 1.50 m,
a = 0.52 m) with plasma current 1~ up to 700 kA. The
plasma is surrounded by a 5-cm-thick aluminum shell
with one toroidal and one poloidal gap. The shell also
acts as the vacuum vessel and a single-turn toroidal field
coil. Magnetic energy and helicity enter through the gaps
across which nonzero toroidal V~(a) and poloidal Ve(a)
voltages occur.

Sawtooth oscillations [16] in the MST consist of
a fast crash phase and a slow recovery phase. The
plasma rapidly relaxes towards its minimum energy state
during the crash within 0.2 ms. This is illustrated by
changes in two dimensionless parameters: the reversal
parameter F =— B~(a)/(4~/era ) and the pinch parameter
0 —= Be(a)/(4 ~/~a ). Figure 1(a) displays tIi~(a), F,
0, and Vo(a) during a sawtooth oscillation, where I„=
210 kA and V~(a) = 20 V. 4~(a) increases by -8%
and I~ increases by no more than 1.5% while F and
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0 decrease during the crash. The increase in toroidal
Aux identifies the sawtooth crash as a "dynamo" field-
generation event. The voltage across the toroidal gap in
the shell, Vq(a), serves later as a trigger for the sawtooth
ensemble averaging and as a time reference. In Fig. 1(b),
the trajectory in an F-0 diagram approaches the minimum
energy state (BFM curve) during the crash.

The important question here is whether the total helicity
is conserved during the relaxation. The calculation of W
and K requires knowledge of radial profiles of the magnetic
field. (A is obtained by integrating B = V X A over the
radius. ) Note that W and K are dominated by their mean-
field values (Bo and Ao ' Bp), with contributions from
fluctuations (B~ and A B) smaller by a factor of 10

Lacking measurement of the magnetic field profiles, we
deduce the profiles (and hence energy and helicity) from
other measured quantities by employing equilibrium mod-
els. We find that the changes of K and W during a saw-
tooth crash can be accurately determined. First consider
the "n model" [17] which assumes A = Ao[(1 —(r/a) ]
in V x B = AB + (Po/2B )B X Vp, where Po =
2/Lop(0)/B2(0) and p(0) is the central plasma pressure.
Every set of u, Oo (= Aoa/2), and Po with a specific
pressure profile gives a unique prediction for F, 0, and
the central poloidal beta Pqo[—= 2@op(0)/Bq(a)]. Since
F, 0, and Pqo are measured quantities, it is possible to
deduce the corresponding n, Oo, and Po. To perform the
inverse mappings, we have developed an artificial neural
network (ANN) [18], trained by the error backward prop-
agation technique [18] using a table created by forward
mapping. The ANN has been shown to map (F, 0, and

Pgo) to (n, Oo, and Po) space with negligible errors.
From the dimensionless parameters (u, Oo, and Po) and

one dimensional parameter, say C&~(a), the helicity K and
energy W can be obtained. The results with a parabolic
pressure profile over the ensemble-averaged sawtooth os-
cillation are shown in Fig. 2. Other pressure profiles yield
negligible differences. Both K and W decrease during the
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FIG. 2 The magnetic helicity K, magnetic energy W, and
"excess energy" (W —W;„)/W;„during one sawtooth cycle.
W;„ is energy predicted by the BFM with a given K and
4~(a). Also shown is Vq(a) as a time reference.
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sawtooth crash, but the drop in W (=8%) is considerably
larger than in K (=3%).

To determine the dependence of the results on the
equilibrium model, three other models have been exam-
ined: the modified Bessel function model (MBFM) [19]
with finite pressure, a smoothed MBFM, and the "2A
model. " In the MBFM, A is constant out to a cutoff
radius rl, beyond which A falls linearly to zero at the
boundary. The smoothed MBFM has a more realistic
rounded A profile. In both models, the free parameters
are rb, Ho, alld Po. The 2A model uses the A value at
the center, the A value at r/a = 0.8, and Po as free pa-
rameters; it allows hollow A profiles. The ANN again is
trained for these three models. Table I compares results
from all four models. The correction from toroidicity
is approximated from the 0 average of 2(Aa cos0/R),
where A is the poloidal field asymmetry factor. From
the measured A of = —0. 1 [20], the toroidal correc-
tion is about 0.1%. In all models, the helicity decreases
by 3—4% while the energy decreases by 7 —9% during
the sawtooth crash. Taking into account the variations
among models, the resulting helicity changes ranges from
1.3—5.1% corresponding to a 4.0—10.5% change in W.

The change in W is in good accord with Taylor's
theory. Given the helicity and toroidal Aux, one can
calculate the energy of the minimum energy state, W;„,
from the BFM. We find that W closely approaches
W,„during the crash, i.e. , the excess energy (W-
W;„)/W;„decreases from 4% before the crash to 1%
afterward (Fig. 2). The measured change of K of 1.3—
5.1% adheres less to the Taylor theory which assumed
that K is invariant. However, the change in K is indeed
less than that of W (by a factor of 2 —3).

Another way to quantify the difference in dissipation
rates is to compare the confinement times of the helicity
and energy. The balance equations for E and W in a
plasma bounded by a shell (with cuts) are given by

dK = —2 E B dV + 24&y(a)V~(a),
dj

dW

dt
E jdV + I~V~(a) + IOVq(a), (2)

TABLE I. Comparison of helicity K and relative changes
d K/K and d, W/W before arid after a sawtooth crash for four
different equilibrium models.

model +before

(mW b~)
K,f„„AIC/IC
(mW b') (%)

aw/w
(%)

n model
MBFM

smoothed MBFM
2 —A model

23.58
23.14
23.31
23.32

22.84
22.43
22.61
22.40

—3.2
—3.1
—3.0
—4.0

—7.7
—7.7
—7.6
—8.5

where E is the electric field, I~ —= I„,Ig —= 2vrRB@(a)/po,
and the right-hand sides contain integral dissipation terms
and input terms. We define confinement times for helic-
ity ~z = K/[24~(a) V~(a) —dK/dt] and for magnetic en-

ergy r~ ——W/[I~V~(a) + IOVg(a) —dW/dt]. Between
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FIG. 3. Radial profiles of the helicity and energy per unit
radial length before (solid line) and after (dotted line) the crash.

PV

(@8„)across the surface r = b(= a —5 cm) shows that
helicity is continuously transported to the edge between
crashes and its fiux is enhanced during the crash (Fig. 4).
The other five terms in Eq. (3) have been measured
(with rl determined from T, and estimated Z,rr) in the
annular region during a sawtooth cycle. The predicted
helicity fiux from these five terms (the solid line in
Fig. 4) agrees very well with the measured fiux (dotted
line). The enhanced helicity flux is balanced by the
increases in Kedge Kfjgk and g jB by roughly the same
magnitudes. Also, since the surface loss term [22] has
been omitted in Eq. (3), the agreement implies that edge
helicity dissipation, such as from limiters, is not important
in the MST, unlike some other experiments [22].

The total helicity is predicted by MHD theory to be
better conserved than we observe experimentally. The
helicity balance [Eq. (1)] can be rewritten as

the crashes rK (=21 ms) is comparable to re (=25 ms),
but during the crash r~ (=3.4—7.8 ms) is longer than

(=1.9—4.2 ms) by a factor of 2—3.
Spatial information on the helicity and energy eluci-

dates the transport properties. Figure 3 shows the helic-
ity and energy per unit radial length before and after the
crash. The magnetic energy largely decreases at the cen-
ter with little increase at the edge, while the helicity ap-
parently is transported from the center to the edge during
the crash. This phenomenologically explains why the he-
licity is better conserved than energy.

Helicity transport is confirmed by local measurements
of edge helicity flux due to fluctuations. The total helicity
K can be split into three parts: core helicity in the
0 ~ r ~ b region, K„„, edge helicity in the b ~ r ~
a region, K,dg„and the single linkage between edge
poloidal flux and core toroidal flux, K1;„k. The balance
equation for K«g, and K~;„k can be written as

dredge d+1in k+ = 2 gJp Bp dV
dt dt

+ 24p(a)Vp(a) —24p(b)Up(b)

+ 2 (48 )d~b ~

where g is Spitzer s resistivity and Sb is the surface area
at r = b. The first term on RHS is deduced from F. .
8 = Ep ' Bp + (E 8) by using the mean-field Ohm's

law (E . 8)/Bp = rij p
—Eo verified experimentally in

the MST edge [21]. The last term represents helicity
transport across r = b by correlation between fluctua-

tions in plasma potential @ and radial field B„associ-
ated with dynamo activity. [Another helicity fiux term
2 f(Aq(dA~/dt))dSb is small. ]

The fiuctuations P and B„have been measured in
the outer 5 cm region of the MST using a probe [21]
containing both Langmuir probes and magnetic pickup
coils. The measured fluctuation-induced helicity flux

dE
dt

2 rijo ' BodV + 24~(a)V~(a)

+2 (v XB).BpdV,
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FIG. 4. Comparison between the measured fluctuation-
induced helicity tlux (dotted line) and the prediction (solid line)
from local helicity balance at r = a —5 cm.
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where the mean-field Ohm*s law Ep + vp X Bp + (v X

8) = il jo has been used (v. is the flow velocity). The
first two terms on the RHS remain essentially unchanged
during the crash. The last term has been predicted
[23] to be small, as confirmed in MHD simulation [10],
and to scale with resistivity as 2 f(v X 8) BpdV =
—2 f(r/j B)dV By using .j/jo ~ 1 and B/Bp 9 0.03
in the MST, this term yields a helicity change of ~
0.03% over the crash, which is smaller than the observed
change by 2 orders of magnitude. This analytic estimate
is consistent with MHD computation which displays
sawtooth relaxations during which helicity drops by—
6 k [11]. The Lundquist number 5 (~ g ') of the
simulations is 3 && 103, 200 times smaller than that in
the MST. Therefore, the projected helicity change during
a sawtooth crash in the MST is 200 times smaller, i.e.,

0.03%. Hence the helicity should be well conserved in
our experiments.

The helicity decay of 1.3—5.1 % during the crash
implies a dissipation mechanism larger than that predicted
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TABLE II. Comparison of all terms in the helicity and energy balance equations, Eqs. (1) and (2), between and during the
sawtooth crash.

Between crash
During crash

K
(Wb'/s)

0.2 —0.6
—5.3 ——1.3

—2 JE. BdU
(Wb'/s)

—1.3 ——0.9
—6.9 ——2.9

24@V@

(Wb'/s)

1.5
1.6

(MW)

0.9 —2.3
—22. 1 ——8.4

—JE . jdU
(MW)

—2.7 ——1.3
—24.9 ——11.2

I@Vp + IOVg

(MW)

3.6
2.8

by a simple Ohm's law. Table II lists all three terms in
Eqs. (1) and (2) between and during the crashes. Dis-
sipation terms are enhanced by a factor of ~2 for K
and a factor of )4 for W during the crash, while the
input terms remain essentially unchanged. Since dissi-
pation at the edge is measured to be classical and its
estimated enhancement during the crash can only ac-
count for less than 10%%uo of the total helicity decrease,
the anomalous dissipation must occur at the inner re-
gion. Possible candidates for the enhanced helicity dis-
sipation are inferred by inserting the generalized Ohm s
law [24] F. = t/j —v X B + j X B/en —VP, /en into
the helicity dissipation term to yield F. . B = —VP, .
B/en + t/j B. Volume integration of the first term
may be rewritten as —f(Vn/en2)P, B dV This te. rm van-
ishes if P, /n, or the electron temperature, is constant
along the magnetic field. Considering the contribution
of the fluctuating pressure, the term may be rewritten as

PV fV—f(Vn/en ) (P,B„)dV, where (P,B„) is identified as the
electron momentum flux due to magnetic fluctuations (re-
lated to the kinetic dynamo mechanism [21]). From edge
measurements of P, and B, we note that this term can be
large. Other possible mechanisms of anomalous helicity
dissipation may result from the kinetic modifications in
the Ohm's law due to the fast electrons.

In summary, the first experimental test of Taylor's he-
licity conservation hypothesis has been performed dur-

ing sawtooth relaxation in the MST RFP plasma. First,
the observed substantial decay of the magnetic energy
(4.0—10.5%) is in good accord with Taylor's relaxation
theory. Second, the relatively smaller decay of helicity
(1.3 —5.1%) modestly supports the essence of the helicity
conservation conjecture. However, the result that the de-
cay ratio of energy to helicity is a factor of 2—3 instead
of orders of magnitude, indicates that helicity conserva-
tion is only a rough approximation. Third, the helicity
change is larger than the simple MHD prediction. Deter-
mination of detailed mechanisms for possible anomalous
helicity dissipation during relaxation awaits further inves-
tigations. Fourth, enhanced transport of helicity, rather
than local dissipation during the crash, phenomenologi-
cally explains its weaker decay, confirmed by a direct
experimental observation of helicity flux due to the dy-
namo fluctuations. Finally, we note that the current in-
vestigation is based on equilibrium modeling; the direct,

accurate determination of K and W from profile mea-
surements remains an experimental challenge.
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