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Thermalization of a Brownian Particle via Coupling to Low-Dimensional Chaos
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It is shown that a paradigm of classical statistical mechanics —the thermalization of a Brownian
particle —has a low-dimensional, deterministic analog: When a heavy, slow system is coupled to fast,
deterministic chaos, the resultant forces drive the slow degrees of freedom toward a state of statistical
equilibrium with the fast degrees. This illustrates how concepts useful in statistical mechanics may

apply in situations where low-dimensional chaos exists.

PACS numbers: 05.45.+b, 05.40.+j

Since the study of chaotic dynamics has clarified
fundamental issues in classical statistical mechanics [1],
it is worthwhile to consider the converse: When does
intuition from statistical mechanics carry over to lo~-
dimensional chaos? We all know, for instance, that a
heavy particle immersed in a heat bath —a Brownian
particle —is subject to both an average frictional force and
stochastic fIuctuations around this average, and that the
balance between these two thermalizes the particle. Now
suppose the "Brownian" particle is coupled to a fast, low-
dimensional, chaotic trajectory, rather than to a true heat
bath. It is known that the particle then feels a dissipative
force [2—4]. Does the particle also (in some sense yet to
be defined) "thermalize" with the chaotic trajectory? That
is, does the fast chaos behave as a kind of "miniature
heat reservoir, " exchanging energy with the particle in
a way that brings the two into statistical equilibrium?
In this paper, we pursue this question by considering
the reaction forces acting on a heavy, slow system (our
Brownian particle) due to its coupling to a light, fast
trajectory. When the fast motion is chaotic, the forces on
the particle include a conservative force, and two velocity-
dependent forces, one magneticlike, the other dissipative
[4]. However (as in the case of coupling to a true thermal
bath), there also exists a rapidly fluctuating, effectively
stochastic force, which has not been studied in detail. We
describe an approach which incorporates this force, with
the others, into a unified framework. It is shown that the
inclusion of this stochastic force —related to the frictional
force by a fluctuation-dissipation relation [4]—causes the
slow Brownian particle and the fast chaotic trajectory to
evolve toward statistical equilibrium.

This result provides some justification for applying
statistical arguments (involving, e.g. , relaxation toward
equipartition of energy) to physical situations of only a
few degrees of freedom. A discussion of examples
including one-body dissipation in nuclear dynamics [5], the
Fermi mechanism of cosmic ray acceleration [6], and the
diffusive transport of comets [7]—where such "thermal"
arguments may provide insight into the physics behind
more explicit calculations, will be presented in Ref. [8].

As a starting point for our discussion, we consider
the framework of Ref. [4], where the position R of the

slow particle parametrizes the Hamiltonian h governing
the fast motion: h = h(z, R), where z denotes the fast
phase space coordinates. (The nature of the fast system
will remain unspecified, but we take it to have a few,
N —2, degrees of freedom. ) This classical version of the
Born-Oppenheimer framework has received considerable
interest in recent years [3,4,9]. We assume that if R
were held fixed, then a fast trajectory evolving under
h would ergodically and chaotically explore its energy
shell (surface of constant h) in the fast phase space.
This sets a fast time scale ~~ which we may take to
be the Lyapunov time associated with the fast chaos.
A slow time scale ~s is set by the motion of the slow
particle: it is the time required for the Hamiltonian h

to change significantly. We assume ~~ && 7., ; thus the
fast trajectory z(t) evolves under a slowly time-dependent
Hamiltonian h. The full Hamiltonian for the combined
system of slow and fast degrees is given by H(R, P, z) =
P /2M + h(z, R), where P is the momentum of the slow
particle, and M is its mass. (R, P, z) thus specifies a point
in the full phase space of slow and fast variables. It is
assumed that surfaces of constant 0 are bounded in the
full phase space.

Given this formulation, the force on the slow particle
is F(t) = —Bh/BR, evaluated along the trajectory z(t).
From the point of view of the slow particle, this force
fluctuates rapidly, so it is natural to separate F(t) into
a slowly changing average component and rapid Auctu-

ations F(t) around this average. In Ref. [4], Berry and
Robbins introduce an approximation scheme for obtain-
ing the net average reaction force. At leading (zeroth)
order of approximation, the eI.godic adiabatic invariant
[2] dictates the energy of the fast system as a function
of the slow coordinates, and this energy in turn serves as
a potential for the slow system, giving rise to a conser-
vative "Born-Oppenheimer" force Fo. At next order, the
Berry-Robbins framework yields two velocity-dependent
reaction forces: deterministic friction (Fdt) and geometric
magnetism (Fg ) [10]. Geometric magnetism is a gauge
force related to the geometric phase; deterministic friction
(see also Ref. [3]) describes the irreversible fiow of en-

ergy from the slow to the fast variables. Thus, while at
leading order the fast degrees of freedom create a poten-
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(Summation over repeated indices is implied. )
To explain notation, we first define A(E, R) =
J dz 0[E —h(z, R)]. Then X =— 6A/dE, and
u —= —(I /X) a II /8 R. Next,

P
BP M BE

L;, (E, R) is an integrated correlation function defined

by Eq. (20). Finally, e —rf/7. , « 1 is an ordering
parameter; Eq. (2) is valid to O(e).

0, , X, and u have simple interpretations in terms of
the energy shell (E, R) [the surface in z space defined by
h(z, R) = E] A(E, R) is the volume . of z space enclosed
by this shell. X(E, R) = f dz6(E —h) represents the
statistical weight of the shell i.e., the amount of fast
phase space occupied by this shell and is useful for
evaluating energy shell averages:

1
(Q)e,R ~( )

dz 6(E —h) Q(z), (4)

where (Q)e R denotes the average of Q(z) over the energy
shell (E, R). Finally, u(E, R) = (Bh/BR)e R.
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tial well for the slow degrees, at first order the fast motion
effectively adds a magnetic field, and drains the slow sys-
tem of its energy.

What about the effects of the rapidly fluctuating compo-
nent F(t)? If the analogy with ordinary Brownian motion
is correct and some sort of statistical equilibration occurs,
then F(t) ought to play a central role in the process. We
now describe a framework which incorporates the effects
of F(t) into a description of the slow particle's evolution.

In our framework we consider an ensemble of systems.
Each member of the ensemble consists of a single slow
particle coupled to a single fast trajectory, and represents
one possible realization of the combined system of slow
and fast variables. Representing this ensemble by a
density P in the full phase space, Liouville s equation is

BP P r3$ Bh

Rt M BR RR BP

where (., ) denotes the Poisson bracket with respect
to the fast variables z. Henceforth, we will ignore all
information about the fast trajectory except its energy
E(t) —= h[z(t), R(t)] (which evolves on the slow time scale
[2]). Thus what we are really after is the evolution
of W(R, P, E, t); the distribution of our ensemble in the
reduced space where all fast variables other than E
have been projected out. In this reduced space, F(t)
is stochastic, which in turn suggests that W evolves
dtffusively

The derivation of an evolution equation for W is
somewhat involved, and is sketched in the Appendix.
Here we simply state the result

P BW e - - W

M BR
+ D (uW) + —D; XL;iDi( )2

(2)

What does Eq. (2) reveal about the reaction forces on
the slow particle? Below, we outline calculations behind
the following assertions regarding the content of Eq. (2):
(I) it reproduces the average reaction forces Fo, Fgt, and

Fg; (2) it describes the effects of the rapidly fluctuating
force F(t); and (3) it predicts that the Brownian particle
does indeed thermalize with the fast trajectory. For a
more detailed treatment of this problem, see Ref. [8].

First, letting X = P /2M + E denote the total energy
of the system, note that DX' = 0. Thus D is a constrained
derivative: D = (8/BP)~, where the notation indicates
that S, not E, is held fixed. This means that the evolution
depicted by Eq. (2) takes place along surfaces of constant
X in (R, P, E) space; this is simply a statement of energy
conservation.

Next, if we explicitly separate drift terms from diffu-
sion terms, Eq. (2) becomes

(5)

Here, the derivatives with respect to P are the constrained
derivatives (8/BP)~, and

P—u(E R) —eK .

(7)

In Eq. (5), f plays the role of a drift coefficient for
the slow momentum, and thus represents the average
force acting on the Brownian particle. A comparison
with Ref. [4], Sec. 2 reveals that the first term of f is
the leading (Born-Oppenheimer) force Fp, the second is
a sum of the two velocity-dependent forces, Fdf and
Fg: If we express the matrix K in Eq. (6) as the sum
of its symmetric and antisymmetric components, then the
former gives us Fdf, the latter Fg . Equation (5) thus
reproduces the average forces Fo, Fdf, and Fg acting on
the Brownian particle.

The last term in Eq. (5) describes the diffusion of
slow momenta due to the fluctuating force F(t). The
diffusion coefficient is the matrix I., or, more precisely, its
symmetric component L'~ By Eq. (7), however. , L'~

is related to K'~, which, as mentioned, is responsible
for the dissipative force acting on the slow particle.
Equation (7) thus emerges as a Iluctuation-dissipation
relation. This relation was first noted by Berry and
Robbins [4].

Finally, do the forces acting on the slow Brownian par-
ticle cause it to thermalize with the fast trajectory? To
answer, we must first define what we mean by "thermal-
ization" in the context of the present problem (where tem-
perature plays no role). In ordinary statistical mechanics,
thermalI'zation means, fundamentally, a statistE'cal sharing
of the total energy X: After a Brownian particle has long
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W(R, P, E, t ) = G(X) X(E, R). (8)

[G(X) is determined by the distribution of total energies
g('E) which remains constant. ]

We now make some formal arguments to show that
Eq. (8) indeed represents the ultimate fate of a distribution
W evolving under Eq. (2). Consider an entropy S[W] =
—f Win(W/X), where f =—f d~R f d3P f dE. Using the
identity B$/BR = —(8/BE)Xu, Eq. (2) gives

dS e I„rr, 0, (9)
dt 2 W

where I = D(W/X, ). (The inequality follows from the
fact that the eigenvalues of L'~ are non-negative. A
proof of the latter is given in Ref. [8]; less formally, recall
that the eigenvalues of I'~ are diffusion coefficients,
and as such have no business being negative. ) Now,
the distribution of total energies g('E) is conserved as
W evolves with time. However, within the set of all
densities W corresponding to a particular rt(X), S[W] is
bounded from above [8]. Thus as W evolves with time,
the value of S[W] never exceeds a certain upper limit.
Since dS/dt ~ 0, the entropy must eventually saturate,
i.e., I' 0 as t ~ [11]. This in turn implies that

W(R, P, E, t) g('E, R, t) X(E, R) . (10)

However, Eq. (10) is a solution of Eq. (2) only if g is
independent of both R and t, so we finally conclude that
W ~ G('E) X(E, R) asymptotically with time. Thus the
ensemble theI.malizes in the sense defined in the previous
paragraph; this is our central result.

This result may be restated as follows [8]. If we start
with a fast chaotic, ergodic system, which we then enlarge
by coupling a few slow degrees of freedom to the fast
ones, then the combined system is itself ergodic (over the
surface of constant H) in the enlarged phase space. Thus
the property of ergodicity is promoted from the fast phase
space to the full phase space of slow and fast variables.

Note also that this thermalization proceeds on a time
scale much longer than that characterizing the chaotic
evolution (7f). This is again similar to the case of

been in contact with a heat bath, the probability for finding
it in some state of energy x is simply proportional to the
amount of phase space available for the bath to have the
remaining energy X —x. [This leads to the Boltzmann
factor P ~ exp( x/—k&T).] Similarly, in the present con-
text, we take the thermalization of slow and fast degrees to
mean a statistical sharing of the total energy S: The slow
and fast variables have thermalized, if the probability for
finding the former in a state (R, P) is simply proportional
to the amount of phase space available for the latter to
have energy E = 'E —P /2M, namely, $(E, R). [Thus,
X(E, R) plays the role of the Boltzmann factor here. ] For
our ensemble, this condition implies that an initial distri-
bution W(R, P, E, to) evolves toward one that has the form

ordinary Brownian motion —where such a separation of
time scales is central [12] but stands in contrast to the
more familiar examples of low-dimensional chaos (e.g. ,

the N = 2 Sinai billiard [13]),where the mixing time and
the Lyapunov time are comparable.

It is no new thing to say that a chaotic, ergodic
trajectory offers a low-dimensional (N —2) analog for
a truly thermal (N » 1) system. The novelty of the
present work is that it extends this analogy to encompass
the important paradigm of Brownian motion, where the
thermal system or chaotic trajectory is coupled to a few
degrees of freedom characterized by a much longer time
scale. Then, in either case, the forces acting on the
slow system drive it toward a state of genuine statistical
equilibrium with its environment.

Finally, it would be interesting to study the quantal
version of this problem. Srednicki [14] has recently
argued that concepts from quantum chaos may provide
a solid foundation for quantum statistical mechanics.
The focus in Ref. [14] is on genuinely thermal systems
(N » 1), and does not deal specifically with the case
when a few degrees of freedom are slower than the
rest. Nevertheless, Srednicki's application of Berry's
conjecture [15] to the quantal evolution of a classically
chaotic system might serve as a guide to a quantal analysis
of the purely classical problem studied here. (To the
best of my knowledge, no one has looked explicitly at
the application of Berry's conjecture to a system which
classically exhibits two widely separated time scales. )

It is a pleasure to acknowledge that conversations
with Greg Flynn, Allan Kaufman, Robert Littlejohn,
Jim Morehead, and Wladek Swiytecki were very usefnl
in obtaining the results presented in this paper. This
work has been supported by the Department of Energy
under Grants No. DE-AC03-76SF00098 and No. DE-
FG06-90ER40561, and by the National Science Founda-
tion under Grant No. NSF-PYI-84-51276.

Appendix Here w.
—e sketch the derivation of Eq. (2)

from Eq. (1), using what is essentially (though not explic-
itly) a multiple-time-scale analysis, and is similar to that
of Ref. [4].

To begin, we use our adiabaticity parameter e « 1

to formally incorporate into Eq. (1) the assumption that

(R, P) is "slow and heavy, " whereas z is "fast and light":

e + e —e + [Ph) =0. (11)

(It 4o) = 0, (12)

P
Bt M BR
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With this modification, changes in (R, P) take place over
times of order unity, whereas changes in z occur over
times of order e.

Next, we insert the ansatz @ = @o + e@~ + e @z +
into Eq. (11) and order by powers of e:
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P Bh

6R cjP
(14)

Taking a phase space average of both sides over some
energy shell (E, R) in the fast phase space, we get

r ~ l. Since h commutes only with functions of itself
under the Poisson bracket (by assumption of ergodicity),
the solution to Eq. (12) has the form @o(R,P, z, t) =
A(R, P, h(z, R), t). To solve for the dependence of A on
its arguments, we must examine Eq. (13), with r = I:

L~ =2 ah & ah )
ds

r)R; ( (3Ri )

The first factor inside the angular brackets is evaluated at
z, the second at z, (z, R); the average is over all points z
on the energy shell (E, R). It is assumed that the integral

con verges.
Finally, W(R, P, E, t) is given by a projection of @ from

(R, P, z) to (R, P, E):

0= BA P BA+
Bt M BR

—u - DA,
dz 6(E —h)@ = $(E, R) (@)~R . (21)

Bh - Bh
(h, @~}= — —u DA —= — DA,

BR dR
(17)

adopting the notation of Ref. [4]. [The left side of this
equation is evaluated at (R, P, z, t); the value of the third
argument of A on the right side is E = h(z, R).] This
has the form (h, f) = g; the general solution [4] consists
of both a homogeneous term P~tt = B(R, P, h, t) and an
inhomogeneous term

(1R, P, zt) = Bh
ds (z„R) DA,

BR
(18)

where z, (z, R) is the point in phase space reached
by evolving a trajectory from z, for a time s, under
the Hamiltonian h(z, R). Note that (@~t)Ea = 0 for any
(E, R).

We solve for B much as we did for A: writing Eq. (13),
with r = 2, we average each side over an energy shell
(E, R). After manipulation, this gives

P
0 = —(XB) + — (XB) —D (uXB)

8t M BR

——D; (XL;&D~A), (19)

where

where the third argument of A is now F, the energy of the
shell over which the average is taken. With the identity
D Xu = P/M r)X/r7R, we rewrite Eq. (15) as

P—(XA) = — (XA) + D u XA . (16)
Bt M BR

To solve for P ~, we first use Eq. (15) to rewrite
Eq. (14):

Since (@)~a = A + eB (to order e), we combine
Eqs. (16), (19), and (21) to obtain the desired result,
Eq. (2).
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