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Crystallization waves exist at the *He solid-liquid interface at low temperatures that are analogous to

capillary waves at a liquid-air interface.
leading to the so-called Faraday instability.

Standing capillary waves can also be excited parametrically
We analyze here the analog of this instability for

crystallization waves. The threshold for the instability is independent of the surface stiffness at low
temperatures, and therefore also independent of the crystalline anisotropy. The symmetry of surface
patterns above the instability threshold, on the other hand, is argued to be sensitive to crystalline

anisotropy.

PACS numbers: 67.80.—s, 64.70.Dv, 68.35.Md

In 1978, Andreev and Parshin [1] made the interesting
prediction that at low temperatures the interface of a *He
crystal in contact with the melt would support weakly
damped crystallization waves. These are the immediate
analogs of the well-known capillary waves at the liquid-
vapor interface. The existence of these waves is a result
of the frictionless mass transport through the superfluid
at low temperatures [1-3]. While the existence of
crystallization waves was verified shortly thereafter by
Keshishev, Parshin, and Babkin [4], it is only in recent
years [5—7] that they have been studied systematically as
a tool to probe the anisotropy of the surface stiffness of
the interface as a function of crystallographic orientation.
An interesting difference between crystallization waves
and capillary waves is that in the latter the damping results
from the dissipation in the bulk of the fluid due to vis-
cosity, while in the low temperature regime the damping
of crystallization waves arises from the kinetic growth
coefficient [1-3,8—10] at the interface. This coefficient is
strongly temperature dependent; as a result, the damping
of crystallization waves can simply be tuned by changing
the temperature. Another important difference is that
the crystal interface is anisotropic, as a result of which
crystallization waves are governed by an anisotropic
surface stiffness rather than the surface tension.

In all the experiments done so far, the crystallization
waves are excited at one side of the interface of the He
crystal, so that the waves propagate along the interface.
By measuring the wavelength and the decay of the am-
plitude along the interface as a function of frequency, the
dispersion relation can be extracted, and the surface stiff-
ness and damping coefficient can be obtained. However,
for regular fluids, it is well known that standing capillary
waves can also be excited by a parametric instability, the
so-called Faraday instability [11—13]. It is the purpose of
this article to explore the crystallization wave analog of
this capillary wave instability and to point out a number
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of interesting features that appear to make it worthwhile
to carry out such an experiment.

The Faraday instability leading to standing surface
waves occurs when a fluid is oscillated uniformly in the
direction perpendicular to the interface. Essentially this
amounts to a periodic modulation of the gravitational
acceleration. Since the instability is parametric, the
frequency w of the capillary mode that first goes unstable
upon increasing the driving amplitude corresponds to half
the driving frequency 2w. Parametric surface waves have
been studied by several groups in the last few years
as an interesting example of a nonequilibrium pattern
forming system [13] that can exhibit low-dimensional
nonlinear dynamics as well as interesting spatiotemporal
behavior: transitions between ordered and disordered or
chaotic patterns, secondary instabilities, and unexpected
averaging behavior [12—-20]. Most of these experiments
have been done on fluids with a relatively small viscosity,
so that the damping of the waves is small. In the small
damping limit, which is the case that has been analyzed
in most detail theoretically [13,21], theory predicts that
square standing wave patterns should occur just above
the threshold for instability; experimentally not only
square [14,19,20], but also hexagonal [15] and one-
dimensional striped [18], patterns have been observed
close to threshold. It appears that square patterns are
favored for small viscosity fluids, while other symmetry
patterns are favored at higher viscosities, but this issue is
not very well understood.

Experiments on parametrically excited crystallization
waves offer an interesting route to help clarify this issue:
as mentioned earlier, over much of the experimentally ac-
cessible temperature range the damping of crystallization
waves is determined by the kinetic coefficient at the in-
terface. The strong temperature dependence of this coef-
ficient allows one to vary the damping without changing
the other parameters of the system. In effect, one can
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study the Faraday instability with a fluid with continu-
ously tunable viscosity. In addition, the anisotropy of the
surface stiffness of vicinal surfaces gives rise to surprising
new effects, whose study may yield new insight into the
properties of the “He crystal-liquid interface.

For our discussion of the parametric crystallization
waves, we follow Andreev and Parshin [1] in our deriva-
tion of the linearized interface equations. In the low tem-
perature regime, the normal fluid density can be neglected;
furthermore, at temperatures low enough that the growth
resistance of the interface is dominated by the reflection
of ballistic phonons, the growth kinetics takes the form of
a local expression for the normal interface growth veloc-
ity v, [1,8,9]

Un = K(/-L.r - ,ch)- (1)
Here u; — p. is the difference in the chemical potential
between the superfluid and the solid. For reflection of
ballistic phonons, one expects K to vary with temperature
as T*, and according to the data [6,10,22] this local
growth regime extends up to temperatures of several
hundred millikelvin.

Let z = { denote the vertical position of the perturbed
interface relative to the equilibrium position z = 0; to
linear order, we then have v, = ¢ in (1). Since we
will only discuss the linearized equations, it is convenient
to consider a single mode { = ()¢ with k > 0. _In
the superfluid, we have potential flow with v, = V.
To relate ¢ to the interface perturbation {, we note
that the frequency of crystallization waves is low in
comparison with (second) sound waves. We can therefore
take the superfluid incompressible, V - o, = V¢ = 0.
In terms of Fourier modes satisfying this condition,
we then have ¢ = ¢ (¢)e’** %2, For the z component
of the superfluid velocity at the interface, this gives
vy, = —kyp(t)e?*™. Conservation of mass at the interface
requires that p,v,, = —(p. — ps){, where p. and p; are
the mass densities of the crystal and the superfluid. A
combination of these two results then gives
no = 225w, @

Ps
where Ap = p. — p, is the density difference between
the crystal and the superfluid.

To evaluate the right hand side of (1), we note that since
temperature variations can be neglected [8], variations in
the chemical potential can be expressed in terms of the
pressure variations at the interface,

6P SP,
e s n( 12
Ps Pc

where m is the mass of a “He atom. At a curved
interface, there is a pressure difference that is proportional
to the curvature; for the isotropic fluid-air interface,
the proportionality constant is the surface tension. For
the anisotropic but rough solid-liquid interface the total
surface energy depends both on the surface area and on
the surface orientation, and the appropriate generalization

3)

for our case is [23]

2
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Here vy is the surface stiffness, which depends on the
angles ¢ and 6 between the direction of propagation of
the wave and the crystalline orientation. In the Faraday
experiment, the cell is oscillated in the z direction; this
amounts to a modulation of the gravitational constant,
g(t) = g(1 + Ecos2wt), where & is the amplitude of the
modulation. For pressure variations in the superfluid at
the interface, we can in the regime of interest use the
Bernoulli relation to give 6P, = —p ¢ — psg(t){. With
(2), this gives

Ap .. . -
8P, = 'Tpik(t)e”"‘ — psg(l + &Ecos2w1) i (1)e™.

4)

Using (3)—(5) for the right hand side in (1), we finally
arrive at the following equation for the amplitude ¢

G + Tidi + w2(k)[1 + 2ecos2wi]l =0,  (6)

where we have introduced the damping coefficient I'y, the
frequency wq(k) of crystallization waves in the absence of
damping, and the scaled driving amplitude &,

kpsg y(¢,0)k? pcpsk
200\ 4 _ _PcPsk
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—1
1 y(¢,0)k?
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For a single k mode, this equation is the prototype
equation describing parametric resonance, the Mathieu
equation. The predictions following from this equation
are well known, and they can be expressed analytically
in the small damping limit T'y/wo(k) < 1. When & is
increased, the first instability occurs at [24]

g, = Iy /wolk) (1) with wolk) = w. (8)

Note that the frequency of the waves that first go
unstable is half the driving frequency, as is characteristic
of a parametric instability. Upon increasing & above
the threshold value e., more and more modes with
frequency wo(k) near w become unstable, i.e., lead to
exponentially growing solutions of this linear equation.
In the experiments on the Faraday instability in fluids, one
observes standing wave patterns slightly above threshold,
because the growth of the unstable modes saturates
due to nonlinearities. These standing wave patterns
subsequently show transitions to more complicated states
upon increasing the driving further beyond threshold [14—
20]. For larger values of I'y, the scenario near threshold
is essentially the same, but the resonance frequency and
threshold values deviate from those given in (8) and
have to be obtained numerically or from tabulated values.
Experimentally one observes different patterns away from
threshold in this regime [15,18].
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We now discuss some of the salient differences and
similarities that we expect between parametrically gener-
ated crystallization waves and capillary fluid waves, fo-
cusing on the ordered surface patterns that we expect near
threshold.

(i) Frequency and wavelength scale. The parametric
equation (7) is of the same form as the one describing
the Faraday surface instability of low viscosity liquids
[12,13]. Physically, the main difference is that for liquid
systems, the damping term is due to the viscous friction
in the bulk [25], while for crystallization waves the
friction arises from the kinetic boundary condition (1)
at the interface in the temperature regime we consider.
There are also interesting quantitative differences in
the parameters entering the expression for wg(k). In
“He, the density difference between the superfluid and
the solid is much smaller than the analogous term for
capillary waves at liquid surfaces. In the latter case
Ap = p,;, the liquid density, since the density of air
can be neglected. At the same time, however, the
(isotropic) surface tension <y of typical liquid-air interfaces
is a factor of 100 larger than the solid-liquid interface
stiffness of the *He interface. Thus the differences in
these parameters largely cancel, and the wavelengths of
capillary surface waves and crystallization waves are quite
comparable. For example, the wavelength A = 2.83 mm
that one obtains [19] by parametrically exciting a layer
of silicon oil at 160 Hz, is only a factor of 2 smaller
than that of crystallization waves at this frequency. We
likewise expect the amplitude of parametrically excited
crystallization waves to be of the same order of magnitude
as those found typically in experiments on capillary fluid
waves, i.e., fractions of a mm.

(ii) Tuning the friction. An interesting aspect of crystal-
lization waves is that the growth coefficient K, and hence
Iy, is strongly temperature dependent. Indeed, according
to the data [6,7,22] at about the upper end of the tem-
perature range where (1) is accurate, I';/w is of order
unity, while at lower temperatures I'; /o << 1. Contrary
to the fluid case, where (6) is not accurate for ratios I'y/ @
of order unity [13,21], the Mathieu equation (6) is the
proper linear equation for parametric surface waves over
the whole temperature range where the kinetic expression
(1) is a good approximation [2,8]. We pointed out above
that the surface patterns of parametrically excited Faraday
waves appear to vary with the damping ratio; it is there-
fore of interest to study the dependence of crystallization
patterns on temperature, especially in the regime where the
surface stiffness is relatively isotropic [see (iii) below].

(iii) Anisotropy. Let us now consider the consequences
of the anisotropy in the surface stiffness y(¢,8), where ¢
is the angle the surface normal makes with the ¢ axis,
and 6 the angle between the projection of the ¢ axis
on the surface plane and the direction of propagation of
the waves. According to the data of Rolley et al. [7],
v is essentially independent of @ when the surface angle
¢ = 3°. In this regime, we expect the nonlinear standing
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wave patterns to be close to those seen in the experiments
on fluids. For so-called vicinal surfaces with angles
¢ =< 3°, however, y is found to be very anisotropic; in
this strongly anisotropic regime a picture of a surface
that consists of many well-separated, almost parallel steps
becomes appropriate. The measurements [7] show that
v is small for # = 0 when the crystallization waves
propagate in the direction perpendicular to the steps,
and large for # =~ 90° when the waves run parallel to
the steps. In the anisotropic regime ¢ =< 3°, we had
intuitively expected the instability threshold to be lowest
for waves with 6 = 0, i.e., waves in the direction with
lowest y for which surface undulations cost the lowest
interfacial energy. For driving amplitudes & just above the
critical value, one would then expect the surface to consist
of straight one-dimensional undulations parallel to the
steps of the surface. However, the low-damping threshold
condition (8) shows that this is not necessarily true. When
translated back into the external driving amplitude & (8),
becomes

. _ 2pcw

Ee mKgAp’ @
This condition is independent of the stiffness y(¢,80)
and hence independent of the angle 6 of a crystalliza-
tion wave relative to the crystalline orientation. This re-
sult has two important implications. First, it yields an
additional, independent way to measure the growth co-
efficient K and to determine the regime over which (1)
is an accurate approximation. Second, according to (9)
all linear modes with w = wq(k) go unstable at the same
time [26]. Hence, in spite of the anisotropy, the sym-
metry of the standing wave pattern (e.g., rectangular or
one-dimensional) just above onset of the instability, is
not prescribed by the linear instability. Theoretically,
the symmetry will then be determined by the nonlinear
terms, which we do expect to depend sensitively on the
anisotropy in vy and K. In particular, while recent mea-
surements [22] show that K is indeed strongly dependent
on ¢, linear crystallization wave experiments are only
sensitive to the normal growth coefficient of the unper-
turbed flat interface and hence cannot probe the strong 6
anisotropy that one expects once deviations from planarity
become important. Nonlinear wave patterns, on the other
hand, will depend on this anisotropy. Experimental stud-
ies of the ordered patterns in conjunction with a nonlinear
theory will therefore in principle yield new information
on the surface properties of “He. Whether the nonlinear
surface pattern symmetries depend sufficiently strongly on
the #-anisotropy of K to make this feasible, remains to be
determined by a nonlinear analysis.

(iv) Alternative excitation mechanisms. In experiments
on fluids, the modulation is usually achieved by oscillat-
ing the cell with a loudspeaker. While it is desirable to
go to higher frequencies to get the wavelength A much
smaller than the linear cell dimension, the frequency range
over which this can be done is often limited to values

= wo(k). )
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around 100 Hz due to mechanical instabilities. A promis-
ing possibility, also for low temperature applications, is
to oscillate the sample with a piezoelectric [27], instead
of with a loudspeaker. With an amplitude modulation
a = 1 um that appears feasible in this way, one finds
from (9) with & = 4aw?/g that this should allow one to
excite parametric waves for frequencies larger than sev-
eral hundred Hz. In principle, one can also excite crystal-
lization waves parametrically with the aid of an ac electric
field E = E cos wt in the direction normal to the interface
[28]. We have analyzed this situation by including the
field energy terms of the form mp - 8E/p on the right
hand side of Eq. (3), with the field variations SE calcu-
lated to first order in the interface modulation ¢, and p
the polarization. The threshold field strength E;, for the
Faraday instability then turns out to be

-2 4pcw0(k)

Eyw = = o

mK egRk

with R = (e. — 6:)[1)663(6& -1 - psef(fc - 1)]ps63
X (€. + €5), €y the permittivity of free space, and
€. =~ 1.08 and €, = 1.07 the relative dielectric constants.
Because of the small difference between €. and e,
R = ©O(107°), and this gives E; =~ 200 kV/cm. This
is more than an order of magnitude larger than what
appears to be experimentally feasible [29], so oscillating
the sample with a piezoelectric appears to be the most
promising excitation mechanism.

In conclusion, our analysis of the Faraday instability of
crystallization waves shows that in the low temperature
regime the threshold condition involves the growth coeffi-
cient only; in spite of the crystalline anisotropy, all surface
modes go unstable simultaneously. As a result, the sym-
metry of ordered patterns above threshold is argued to be
determined by the anisotropy through the nonlinear terms.
Experimental and theoretical analysis of these effects may
therefore yield new information on the surface properties
of “He.
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