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Both vacuum and electrovacuum Einstein equations
enjoy a complete integrability property being restricted to
space-times admitting a two-parameter Abelian group of
isometrics [1]. This entails rich mathematical structures
such as an infinite set of nonlocal conservation laws [2]
and Backlund transformations [3]. Similar property is
shared by higher-dimensional vacuum Einstein equations
independent of the extra coordinates [4]. A large class
of scalar-vector gravity coupled systems motivated by
Kaluza-Klein (KK) and extended supergravity theories was
studied by Breitenlohner, Maison, and Gibbons [5], who
listed a variety of integrable models in a nonexplicit form.

Recent interest in such systems is related to the
heterotic string theory [6]. A pure gravity coupled
to a dilaton and an axion was analyzed as a two-
dimensionally integrable theory by Bakas [7]. However,
the most intriguing features of string-motivated gravity,
related to the black hole puzzle, are due to the peculiar
nature of the dilaton coupling to vector fields [8]. Here
we present an explicit proof of integrability of two
stringy gravity models including vector fields: the static
axisymmetric Einstein-Maxwell-dilaton (EMD) system
with an arbitrary dilaton coupling constant, and the
stationary axisymmetric Einstein-Maxwell-dilaton-axion
(EMDA) system. Although a possibility of a coset
representation crucial for integrability can be suspected
already from Table I of [5] (N = 4 supergravity), an
explicit structure of the cosets in terms of the initial four-
dimensional variables seems not to have been given so
far. Meanwhile, it is necessary in order to derive the
corresponding Lax pair and to apply an inverse scattering
transform (IST) method [9].

The derivation is similar to one used earlier in the
case of vacuum and electrovacuum Einstein equations
[10]. It consists of presenting the theory in a space-time
possessing a Killing vector field in terms of the three-
dimensional sigma model with a subsequent derivation
of the hiero-curvature representation of the equations of
motion. The procedure is rather well known, so we just
outline its main steps and fix our notation.

Consider a general four-dimensional coupled system
of gravitational, U(1) vector, and some scalar massless
fields. Assuming the metric to admit a timelike Killing
symmetry, one can write the interval as

ds = f(dt —to;dx') + f '—h;idx' dxi, (1)

1
5 (R —gga(rp) ri;tp"il, rp h") Vhd x, (2)

where R is the three-dimensional scalar curvature, q" =
(f, g, v, a, sc alrafields), A = I, . . . , K, and @~a is the
target space metric.

Suppose that the target space is a symmetric Riemann-
ian space G/H with N-parameter isometry group G acting
transitively on it (H being an isotropy subgroup), gener-
ated by the set of W Killing vectors forming the Lie al-
gebra of G, [K~, it: ] = C,Kx, p„, v, A = 1, . . . , N. Then
the equations of motion for p" will be equivalent to the
set of conservation laws for Noether currents

il;(h" Whj,") = 0, p p, ~P A

1;
Bx

built using the corresponding Killing one-forms
rit"'K,"@~ad@,where rit"" is an inverse to the Killing-
Cartan metric g~, = kc ~p CP, . With a proper choice
of k these one-forms will satisfy the Maurer-Cartan
equation

(4)

Let e„denote some matrix representation of the Lie
algebra of G, [e~, e„]= C ~,eq. Define the following
matrix-valued connection one-form: A. = A.ad p
e„7.t'. In view of (4), the corresponding curvature
vanishes,

SBC ~C B ~B,C + [~B ~C]
and thus A.~ is a pure gauge

gEG.

(5)

(6)

where f, co;, and the three-metric h;, depend on the
space coordinates x', i = 1, 2, 3, only. Then the U(1)
field is fully describable in terms of electric and magnetic
potentials v, a. Usually, in conformity with the Einstein
constraints, a twist potential y may be introduced to
generate the rotation one-form to;. Together with f and
scalars, these variables may be interpreted as a set of
scalar fields constituting a source for h;, . If there are
no scalar potentials in the initial four-dimensional action,
the theory will be equivalent to a three-dimensional sigma
model
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The pullback of A. onto the configuration space x' is
equivalent to (3) and, hence, to the equations of motion
of the sigma model. In terms of g Eqs. (3) read

(R = 5), and

[df + (d~ + vda —adv) ]

pU —AVDi+ =
p2 + A2

pV+ AU
D2% =

p2 + A2
(10)

Here V = pg ~g ', U = pg, g ', 'P is a matrix "wave
function, " and

D]=B 2A

p2 + A2

2A pD2=hp+
p2 + A2

d((*dg) g 'J = 0,

where the star stands for a three-dimensional Hodge dual.
Now impose an axial symmetry condition, representing

the three-metric in the Lewis-Papapetrou form:

h;, dx'dx' = e ~(dp + dz) + p dp

Then (7) becomes equivalent to a modified chiral equation

(pg, ,g '),, + (pg, g '),, =o
and the corresponding Lax pair with a complex spectral
parameter A can be found:

1 -2-——(e ~dv + e ~da ) + 2dg . (15)

For a = 0 and @ = const this metric reduces to one given
by Neugebauer and Kramer for the Einstein-Maxwell
(EM) system [10].

For a general stationary class of metrics (1), the
target space (15) is a symmetric Riemannian space
only for n = 0, ~3, when it has the structure of cosets
SU(2, 1)/S[U(2) X U(1)] X R and SL(3, R)/SO(3), re-
spectively, corresponding to the BDM and five-
dimensional KK theories [5]. For n 4 0, ~3 the
isometry group of (15) is only W = 5 solvable subgroup
of SL(3, R). However, if an additional condition of
staticity is imposed, cu; = 0, the (truncated) target space
turns out to be a symmetric space for arbitrary n. For
the static geometry it is consistent to consider electric
and magnetic configurations separately. Both will be
described by the same equations after reparametrization

g = {ny —21 fn)/ ,vi1 = [y + (n/2) lnf]/v,

are commuting operators; then (9) follows from the com-
patibility condition [Di, D2]% = 0. This linearization is
sufficient to establish a desired integrability property. The
IST method [9] can be directly applied to (10) to gener-
ate multisoliton solutions, and an infinite-dimensional al-
gebra of a Geroch-Kinnersley-Chitre (GKC) type can be
derived.

Let us apply this formalism to EMD and EMDA
systems. The first described by the action

[R —2(B@) —e ~F ]Q—g d x, (12)

1
Fio = 8;v,

2
Fij 2np ij k g

$2h
(13)

where P is the real scalar field (dilaton), F = dA is the
Maxwell two-form, and o. is the dilaton coupling constant.
For n = 0, (12) reduces to the Brans-Dicke-Maxwell
(BDM) action in the Einstein frame (with the Brans-Dicke
parameter cu = —1). For n = ~3, (12) is derivable from
the five-dimensional KK theory.

In conformity with the Maxwell equations following
from (12), electric and magnetic potentials can be intro-
duced via

for a magnetic case, and

g = —(n@ + 21nf)/v, tt = [@ —(n/2) inf]/v,

Ki =8„ K2 —P B~ v H. Bg,

K3 = QB~ V (19)
where p = (u2 + v e 2"~)/2, with the sl(2, R) struc-
ture constants t" ]2 = t"

32 = C'[3 = 1. The correspond-
ing Killing-Cartan one-forms, with the normalization k =
(2v), will satisfy (4), and dlz = 2'„,rt" e ~', where
tt~, = 2k diag(1, 1, —1). Choosing as e~ a 2 X 2 repre-
sentation of sl(2, R), one can find from (6) the following
matrix g E SL(2, R)/U(1):

(17)
for an electric one, where v = (n2 + 1)/2. Denoting as u
either magnetic (a) or electric (v) potentials, respectively,
one can present the line element of the truncated target
space as dl3 = d q + dl2, where2 2 2

dl2 dg2 e2vt d 2 (18)
This two-dimensional space can be easily shown to
represent a coset SL(2, R)/U(1). Indeed, one can find
three Killing vectors for (18),

while the twist potential ~ is defined through q~
(

u' —p „—u/K2) (20)

w; = 8;y + vB;a —aB;v, r' = f e'~" B~o)l, /Jh

(14)
(three-dimensional indices are raised and lowered using
h;J). The corresponding target space is five-dimensional

Alternatively, in view of the isomorphism SL(2, R)—
SO(2, 1), a 3 X 3 representation in terms of SO(2, 1)/
SO(2) coset can be derived. In the axisymmetric case
both can be used in the Lax equations (10).
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1For n = 0 (v = 2) the above theory reduces to the cor-
responding representation for electrovacuum. Since, as we
have shown, the underlying algebraic structure is a inde-
pendent, already this fact is sufficient to reveal integrability
of the static axisymmetric EMD system with arbitrary n.
However, in the stationary case the coset representation
does not exist for the arbitrary-n EMD system.

Remarkably, the EMDA theory turns out to be more
symmetric and is integrable in the stationary axisymmet-
ric case too. The EMDA action in four dimensions reads

1 1
R —2B @8~@ ——e ~B K(3~K

16~ p, jL

—e ~F~„F"' —KF„,F"' Q
—g d x,

(21)
where F&' = 2E/ '~ F~, ~ is an axion field. An electric
potential is still introduced through the first of Eqs. (13),
while for a one has

e ~F" + KF'~ = fe''"Bx—a/42h. (22)
For a twist potential (14) remains valid. The target space
now is six dimensional (K = 6), and its metric reads

7 = 0)1 + COf,
01

where

= cu 1
—cuf —2co2, (26)

—2d@ + a(vcux + 2co, ),

~f =f "f + X~x. cu2 = vcr, + ace, . (27)

We introduce a recurrent sequence

M3 KCOa Mv~ A@4 = ac@ + co3,

COg = V CO+ + Ma,

~6 = dK K CO» + 4Kdp a(CO4 + M3),

M7 = QP» + V(CO~ + Ctf5),

co8 = a7 vM6 +M3 + aco2 + da,01

co9 v 7 —aco7 —y cu + v co2 + dv,02

(28)

cu = ac@9 —
s + X4' x

—
2

— f) + ~X.
Then the remaining set will read

27 = M + CO6 CO7 M +,
09

as follows. An Abelian subalgebra of so(3, 2) corresponds
to

2 2g= —e ~co, +2d@ + — +f ~
2 f2 X)

f[ $e2~2 + e
—2/~2)

where

(23)

2'T = M Cc)6 &77 + CcP~,
02

—27 = cap + M6 + M7 + co+,
Ol

= ~ —m6 + cu7 —co~,
12 (29)

~. = e4&d~, ~x = f 2(d)r + vda —adv), Egg + Mg, cog —6)8,
13

f 'e 2~dv—, cu, = f 'e ~(da——Kdv).

(24)

Note, that the EMDA theory does not include the EMD
one as a particular case. Indeed, setting ~ = 0 gives
a constraint FF = 0. Similarly, the EMD theory does
not contain the EM one: setting P = 0 gives another
constraint F2 = 0.

As it was shown recently [11],the space (23) possesses
a X = 10 isometry group consisting of scale, three-gauge,
three axion-dilaton duality, and three Ehlers-Harrison-
type transformations, which unify T and S string duali-
ties in the four-dimensional zero-slope heterotic string
theory. Here we will show that the target space is
a symmetric space which can be identified with the
coset SO(3, 2)/[SO(3) X SO(2)]. (This coset seems to
be reminiscent of the SO(8, 2)/[SO(8) X SO(2)] coset
mentioned in [5] in the context of the N = 4 supergravity
in the case of only one vector field nonvanishing. )
Denoting generators of SO(3, 2) by pair indices ab, a (
b, where a, b = 0, 0, 1, 2, 3 correspond to the invariant
metric G,b

——diag( —1, —1, 1, 1, 1), one has

[MQbM, d] = Gb, M, d
—Gg, Mbd + Gg4Mb, —G Mbd, . a

(25)
The set of ten one-form satisfying Maurer-Cartan equa-
tions with the structure constants C', l, ,f from (25) reads

= ~4 —W9, —Z = Cu4 + Cu9.03 23 =
In terms of r'" one has g4e = zri, b,dr&" rB", where

1 ~gh ~efgab cd 12~ ab ef ~ cd gh ~

Now, using an adjoint representation of so(3, 2), one
can build a 5 X 5 connection one-form A. and the cor-
responding matrix g E SO(3, 2)/[SO(3) X SO(2)]. For-
tunately, due to isomorphism SO(3, 2) —Sp(4, R), there
exists also more concise representation in terms of 4 X 4
matrices. The symplectic connection reads

(3o)

where D, F', C are 2 X 2 matrices, DT = D, FT = F,
C = —, iro3I2 —r"o-, —ir"oy+ r' o-, ),

+ (r" + r") o-,).
Here I2 is a unit matrix and o. , o-~, o-, are Pauli matrices
with o., diagonal. In view of (4), the equations of motion
of the EMDA sigma model are equivalent to vanishing
of the curvature (5) related to (30). This implies the
existence of the symmetric symplectic 4 X 4 matrix g E
Sp(4, R)/U(2) entering Belinskii-Zakharov representation.
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To summarize, we have shown that target space cor-
responding to the static EMD with an arbitrary dilaton
coupling and the stationary EMDA systems in four di-
mensions are symmetric Riemannian spaces isomorphic
to cosets SO(2, 1)/SO(2) and SO(3, 2)/[SO(3) X SO(2)],
respectively. This ensures a possibility of zero-curvature
representation of the equations of motion and an existence
of the Lax pair in the axisymmetric case. The explicit ex-
pressions for matrices in terms of the initial variables open
a way for further application of the IST method. Cur-
rent algebras associated with SL(2, R) and Sp(4, R) gen-
erate infinite-dimensional GKC-type symmetries of the
zero-slope heterotic string effective action. Obviously,
the whole reasoning can be generalized to the case of a
spacelike initial Killing vector field, as well as to the case
of the Euclidean signature of the four-space.

As it was noted in [ll], the isometry group of the
EMDA target space is larger than the product of well-
known T and S string dualities [12]. Now it is clear that,
on the class of space-times admitting a two-parameter
Abelian isometry group, both of these symmetries are
particular elements of the infinite-dimensional GKC-type
group. The implications of this to the exact string the-
ory are still to be explored. An intriguing question is
whether classical integrability of the two-dimensional re-
duced EMDA system entails the possibility of an explicit
construction of new classes of exact string backgrounds
in terms of the gauged WZW models. This issue will be
discussed in a subsequent publication.
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