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We have demonstrated that, analogous to the use of quantum mechanical squeezing to beat the
quantum shot noise limit, classical squeezing can be used to reduce the effect of thermal amplitude
noise in precision measurements. The classical oscillator under study is a single ion in a Penning trap
whose motion is cooled by coupling to a thermal bath. The thermal noise distribution is quadrature
squeezed by parametric amplification. We observe 6 dB of noise reduction below the equilibrium value
when the squeezing axis is 90° out of phase with the coherent signal drive.

PACS numbers: 06.20.—f, 05.40.+j, 07.75.+h, 46.30.Rc

Squeezed states of the photon field are currently re-
ceiving wide attention as a means of reducing noise in
optical interferometers and communication networks [1].
This noise arises from the Heisenberg uncertainty prin-
ciple which sets a fundamental limit to the simultaneous
knowledge of conjugate observables such as the number
and phase of the photon field. Coherent states have equal
uncertainty in the two observables, while squeezed states
have the uncertainty redistributed such that one variable
has reduced uncertainty at the expense of increased uncer-
tainty in the other. By ensuring that the signal is present
in the variable with the smaller uncertainty, one can beat
the quantum mechanical shot noise limit.

Although nearly all squeezing experiments to date have
involved light, the use of squeezing is not restricted to
quantum systems. In classical systems, analogous squeez-
ing methods can redistribute noise of thermal origin [2,3].
While there is no fundamental limit to the product of
variances of conjugate phase space variables in classi-
cal analysis, thermal fluctuations cause an ensemble of
possible initial states to have a Gaussian distribution in
phase space the same as a minimum uncertainty quan-
tum state. In thermal equilibrium, the variance in the two
(properly normalized) conjugate variables is identical, and
the distribution of initial states is circularly symmetric.
After squeezing, the distribution becomes noncircular, as
was first shown by Rugar and Griitter for a parametri-
cally driven mechanical oscillator [2]. In this paper, we
(quadrature) squeeze the thermal motion of another clas-
sical harmonic oscillator—a single ion in a Penning trap.
We show that the effect of thermal amplitude fluctuations,
which can limit a precision measurement of the oscillation
frequency, are significantly reduced by using a squeezed
initial distribution. To our knowledge, this is the first
use of squeezing on a classical system to beat the ther-
mal noise limit on a measurement. This approach may be
of general applicability as a novel technique to solve the
problem of thermal noise in measurements on mechani-
cal systems, in both the classical and quantum regimes.
We have also proposed [3] ways of producing amplitude
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squeezed states which may result in better noise reduction
than demonstrated here.

In order to understand our study, one needs to consider
the dynamics of a single ion in a Penning trap in some
detail. The ideal Penning trap [4] consists of a strong
uniform magnetic field and a weak quadrupole electric
field. The motion of an ion then decomposes into three
normal modes: an axial mode (at w,) along the magnetic
field axis and two radial modes perpendicular to the
field—a rapid cyclotron motion (at w’) and a slow E X B
magnetron drift (at w,,). In a real trap, there are always
residual deviations from the ideal trapping fields which
cause anharmonicities in the potentials.

We use our Penning trap as a precision mass spec-
trometer [5]. Hence, we are primarily interested in mea-
suring the trap oscillation frequencies to high precision in
a short time. We detect only the axial motion of the ion
directly. We use a high Q (~25000) superconducting de-
tector operating around 160 kHz, immersed in a 4 K lig-
uid He bath [6]. The process of detection draws energy
out of the ion’s motion (giving a damping time on the or-
der of a few seconds) until it comes to thermal equilibrium
with the noise of the detector. To access the radial modes,
we couple them to the axial mode using a coupling pulse
(called a “7r pulse”) that exchanges both phase and (suit-
ably normalized) amplitudes between the coupled modes
[7]. In this way the (squeezed) thermal distribution of the
axial motion can be transferred to the radial mode.

The anharmonicities in the electric and magnetic fields,
mentioned earlier, combined with the residual thermal am-
plitude in the modes is at the heart of our problem. The
anharmonicities make the frequency amplitude dependent
so that thermal fluctuations in the amplitude appear as fre-
quency noise during a precision measurement. Actually,
even with ideal fields, the frequency of any classical oscil-
lator is amplitude dependent because of the special rela-
tivistic mass shift. (This “anharmonicity” is particularly
important for the cyclotron mode whose frequency is pre-
cisely measured in mass spectrometry.) To lowest order,
all these anharmonicities cause the frequency of any mode
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to vary as the square of its amplitude, as is illustrated in
the following expression for the dependence of the axial
frequency on the axial amplitude (a;) [4]:
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where C, is the lowest order electrostatic correction, d is
the size of the trap, and c is the speed of light.

Squeezing techniques can alleviate these frequency
shifts by reducing thermal variations of the amplitude.
We squeeze the thermal motion using parametric ampli-
fication, the most common method of quadrature squeez-
ing, which is effected in the axial mode by modulating
the trapping potential at twice the axial frequency. To see
how this comes about, we consider the equation of motion
for the axial mode in the presence of a modulating drive,

7 — wzz(l + gcos2w;,t)z =0, )

where & parametrizes the strength of the parametric drive.
We assume that the motion is perfectly harmonic and
undamped. The solution to this equation can be separated
into in-phase and out-of-phase quadratures as

z(t) = C(t)cosw,t + S(t)sinw, 1, 3)

where C(t) and S(¢) are slowly varying compared to
w,. Their time evolution is given by the well-known
dependences C(r) = C(0)e**:!/* and S(z) = S(0)e 5«@:!/4
[8]. Therefore, the in-phase component is amplified while
the out-of-phase component is attenuated (hence the name
quadrature squeezing), both by the same factor Sg,

Sp = el @

thereby maintaining phase space density (in accordance
with Liouville’s theorem).

The simplifying assumptions we have made for this
analysis are actually not too restrictive. The assumption
of undamped motion remains valid as long as the squeez-
ing pulse lasts for a time much shorter than the ther-
malization time. Although we could have increased the
thermalization time by detuning the ion far from the high-
Q detector’s response, for the experiments reported here
we left the ion on resonance and used a 100 ms squeezing
pulse, which is small compared to the ion’s 3.3 s damping
time. We are also justified in neglecting anharmonicity in
the axial response during squeezing because the relative
change in the axial frequency is less than 10°° as long as
the ion samples are only 15% of the trap’s axial extent.
The thermal rms amplitude is 1.5% of the trap size, and
we restricted the squeezing factor Sp to 3, thus this ap-
proximation is valid.

To make a frequency measurement on a mode, we
excite its amplitude to a finite value using a coherent drive
pulse. This adds vectorially to the preexisting thermal
noise distribution and creates an analog of the quantum
coherent state, as shown in Fig. 1. The two quadrature
components of the thermal noise now appear as amplitude
and phase noise. When the noise is squeezed, the
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FIG. 1. Squeezed distribution produced by parametric ampli-
fication. The circularly symmetric thermal noise distribution

(dotted) at the origin evolves into an elliptic distribution (solid)
along hyperbolic trajectories when the squeezing pulse is ap-
plied. When the excitation pulse is added, the final amplitude
uncertainty depends on the phase difference between the two
pulses.

amplitude variation after the addition of the excitation
pulse depends on both the squeezing factor Sp and
the relative phase ¢ between the excitation pulse and
the squeeze pulse. The variance in the square of the
amplitude (since our frequency noise goes as a?) is given
by

1
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where ay, is the thermal rms amplitude and ag is the ex-
citation amplitude. We can recover the variance for the
thermal equilibrium distribution by setting S = 1. For
small squeezing factors, the maximum improvement over
the equilibrium case occurs when ¢ = 7 /2. Clearly, in-
creasing the squeezing beyond a certain point is not ad-
vantageous because the ends of the squeezed distribution
increase the variance of the amplitude significantly —this
is reflected in the af}, term [9]. The optimum value of Sg
depends on the ratio ag/a,. Under our experimental con-
ditions, this ratio was about 10, for which Sr = 2.4 would
produce the greatest improvement in var[a?].

Since we squeeze the axial motion, we would ideally
like to apply the excitation pulse also to the axial motion.
In practice, a sufficiently large excitation pulse would
cause the axial anharmonicity to be too large for us to
determine the amplitude and phase accurately. Instead,
we transfer the squeezed thermal distribution from the
axial mode to the cyclotron mode using our standard -
pulse technique [7], and then add the excitation pulse,
producing squeezed cyclotron motion. We then mea-
sure the cyclotron amplitude p. using the dependence
of the frequency of the axial mode on the cyclotron
amplitude [4]
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where B,/By is the second order correction to the mag-
netic field. This method is well known and has been used
for detecting cyclotron resonance before [10].

The basic plan of our squeezing demonstration is as
follows. We thermalize the axial motion of the ion by
coupling it to our detector. We then use parametric
amplification to squeeze one quadrature component of the
axial motion at the expense of the other. This squeezed
noise is transferred to the cyclotron mode and displaced
by a fixed amount using a pulse whose phase angle
is varied with respect to the axis of the squeezing, as
in Fig. 1. This causes the squeezed noise to appear as
amplitude and phase noise of the cyclotron motion. The
cyclotron amplitude is then determined by measuring the
shift in the frequency of the axial oscillation, and its
variance is determined by repeating the whole procedure
many times. The squeezing produces an oscillatory
dependence of the variance on the relative phase angle.

For the experiments we used a single Ne* ion in
the trap. The normal mode frequencies for Net were
160 kHz (axial), 6.5 MHz (cyclotron), and 2 kHz (mag-
netron). Before squeezing, the rms thermal amplitude in
the axial mode was ~100 um. During transfer to the
cyclotron mode, this thermal amplitude was transformed
to 15 um; we then applied a cyclotron excitation am-
plitude of 170 um. The magnetic bottle was B,/Bg =
1073 cm ™2 [11]. During each measurement sequence, we
measured the axial frequency with and without the cy-
clotron excitation pulse. The measurement without the
excitation pulse represents a “zero-p.” axial frequency,
and thus has no B, shift. We used this as a reference to
remove any drift in the axial frequency due to drift in the
trap dc voltage that determines w,.

The variance in the axial frequency was estimated by
repeating this sequence 100 times for each setting of Sy
and ¢. The error in this estimate was found by assuming
that the set of N values thus obtained is a random sample
drawn from a normal distribution [12]. For N = 100,
such a sample gives an estimate of the variance with
12% relativer error, which is sufficient for our purposes.
In addition to the error in the measured values of the
variance due to the finite sample size, technical noise
contributes a constant background representing about 25%
of the noise from unsqueezed thermal fluctuations. This
arises from uncertainty in the determination of the axial
frequency from the detected signal as well as intrinsic
noise in the frequency due to fluctuations in the trap
voltage. These variances generate a constant baseline
which was subtracted from the measured noise to obtain
the thermal noise.

The results of axial frequency measurements for a
squeezed cyclotron amplitude distribution are shown in
Fig. 2. We kept the squeezing factor constant by using a
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FIG. 2. Variance in axial frequency. The axial frequency
noise was measured as a function of the relative phase of the
squeeze pulse while the strength of the parametric drive was
kept fixed. The solid line is a best fit by Eq. (5) (from text)
and was obtained using a squeeze factor of 2.6. The maximum
reduction below the equilibrium value is 6 dB and occurs when
the phase difference is 7 /2.

fixed strength for the squeezing drive while we varied its
relative phase. Because of unknown transfer functions,
the phase and amplitude of the drive at the ion’s location
was not known a priori and had to be determined by
fitting Eq. (5) to the data. We have also done experiments
where we varied the squeezing drive strength with a
constant phase. From those results, we were able to
estimate the drive strength needed to obtain an optimal
squeezing factor for our experimental parameters. From
the data in Fig. 2, the best fit by Eq. (5) is obtained with a
squeeze factor of 2.6, close to the optimum value. Under
these conditions, the maximum reduction in the measured
noise in w, is about 6 dB below the thermal equilibrium
value.

We could also use squeezing to benefit our measure-
ment of the oscillator frequency in other ways. When the
relative phase angle is O, the initial state of the oscilla-
tor is “phase squeezed.” Since we measure the frequency
by measuring the phase accumulated in a given time, we
can obtain higher precision in a shorter time if the ini-
tial thermal phase noise is reduced. The measurement of
the phase thereby accumulated could also be limited by
technical noise. In such a case, we can use the paramet-
ric drive as a phase amplifier to “spread out” the phase
around a mean value and reduce the effect of measure-
ment uncertainty. This approach will work as long as
amplitude-dependent effects do not limit our precision.

In conclusion, we have demonstrated that it is possible
to squeeze the thermal distribution of a classical oscillator
to reduce its amplitude fluctuations and its effect on a
frequency measurement. In the work reported here, we
operated in the classical limit due to the high temperature
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of the oscillator. However, using laser cooled ions, it is
possible to cool to the ground state of the ion’s motion.
Our squeezing procedure would then produce quantum
mechanical squeezed states. These states are of interest
in reducing noise during spectroscopic measurements on
trapped ions [13].
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