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Exact and Quasiclassical Fredholm Solutions of Quantum Billiards
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Quantum billiards are much studied as perhaps the simplest case which presents the central difficulty
that the quasiclassical approximation is expressed as a divergent series. We find here, using the
Fredholm method, an exact Green's function for billiards expressed as a ratio of absolutely convergent
series. We make the quasiclassical approximation to this ratio. The method provides a convergence
argument for previous results and an extension of results obtained for the spectrum to the full Green's
function.

PACS numbers: 03.65.Ge, 03.40.Kf, 03.65.Sq, 05.45.+b

It has been more than twenty years [1] since physicists
realized that there is much we have failed to understand
in the simplest quantum problems which are not exactly
solvable. Among the questions studied are correlations
between energy levels and the degree of pseudorandom-
ness of the levels. Similar questions can be asked of wave
functions, matrix elements, and scattering amplitudes. At-
tempts are made to classify the quantum problems, in par-
ticular, by the nature of the classical limit, e.g. , whether
the classical limit is chaotic [2].

Of these problems, doubtless the most thoroughly stud-
ied is that of the wave mechanics of a real time in-

dependent nonseparable two-dimensional potential. Two
further specializations are also commonly made: First (in
spite of much evidence that the wave functions are very
interesting [3]),the study is restricted to the spectrum, and
second, attention is confined to billiards, that is, systems
for which the motion is free in the interior, and for which
the essential problem is posed by the imposition of con-
ditions on the boundary. Some celebrated billiards are
the Sinai billiard, the Bunimovich stadium billiard, and
billiards on spaces of negative curvature. Billiards gain
mathematical and numerical conveniences, and it is hoped
that not much generality is lost. Indeed, there is a vast
literature on boundary integral methods (BIM) which are
basically restricted to billiards. As a rule, BIM are used
to obtain numerical solutions, and this is advantageous
since it is only necessary to discretize the boundary and
not the interior area. (See Boasman [4] for further refer-
ences. ) We discuss here one of the less frequently used
BIM, which requires solution of a Fredholm integral equa-
tion of the second kind.

Our point is that this exact Fredholm solution is
closely related to the approximate solutions obtained by
making a quasiclassical (short wavelength) approximation
(QCA). The QCA is very natural and is much studied in
the physics literature, since the conceptual difficulties are
with higher energy levels where the wavelength becomes
short compared with the length scale of the billiard. The
straightforward QCA yields divergent series in the generic
case that the classical limit is chaotic. Because of this

difficulty, up to now most work has concentrated on the
spectrum, and then for the case of hard chaos where all
orbits are unstable, because these cases are simpler.

This divergence problem due to the exponential prolif
eration of classical orbits is a central problem of the sub-
ject of quantum chaos [2]. It has been more or less solved
for the hard chaos spectral problem by several authors [5—
7]. These authors make the QCA at the outset, however,
and so it is difficult to make rigorous arguments. By mak-

ing the QCA only at the end, we clarify the issues and we
find a formulation of the QCA in terms of absolutely con
vergent series. A by-product is that our formulation is
simpler than previous ones, and, more importantly, it can
be extended to cases such as finding wave functions or
finding scattering amplitudes in open systems. It also is
not restricted to hard chaos, or to any chaos at all, for that
matter.

We want to find a convenient expression for the
Green's function G(r, r', E) at fixed energy E which
satisfies Helmholtz's equation

2A, V2 + E G(r, r', E) = 6 (r —r') (1)

in the interior B of the billiard, and which satisfies the
conditions G(r, r', E) = 0, for r or r' on the boundary
BB We kn. ow G(r, r', E) = g W (r)W (r')/(E —E ),
where 0' (r), vanishing on BB, is the cLth eigenstate and
E is its energy.

The trace of G, f dr G(r, r, E) = g(E —E ) ', gives
the spectrum. In QCA this leads to the Gutzwiller trace
formula [1]. This formal expression is singular, both be-
cause E E is divergent and because the sum is diver-
gent. These difficulties were avoided by studying instead
the spectral determinant [5] (Sh), or equivalently the dy
namical (or Gutzwiller-Voros, or Selberg) zeta function
[8,9] (Dg), an analog of Riemann's zeta function [5].

Here we provide a rigorous formulation giving an
expression for the full Green's function itself in which
a well-defined version of the Dg quite naturally appears
and all series are convergent, all functions are analytic.
This formulation is based on the well-known theory of
Fredholm integral equations. The QCA can be left to the
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end, recovering the earlier results, as well as providing
some new ones. There is one work [4] which arrives at
our expression for the Dg by means of a BIM. This work
is concerned with numerical issues and the accuracy of
the QCA.

We now obtain an integral equation characterizing G.
To do this, we utilize a free space Green's function
Go(r, r, E) which satisfies the differential equation (1),
but does not satisfy the boundary conditions. It is at
this stage we have specialized to billiards, since, in more
general potentials, there is no obvious choice of Gp.
[We will eventually choose outgoing wave conditions
on Go and thus take Go(r, r', E) = H„(k~r —r'~)/2i6,(])

where Ho (x) is the Hankel function of the first kind, and
(~)

k—:p/6—:+/2E/6. ] Applying Green's theorem yields

1 2G(r, r', E) = Gp(r, r', E) ——A. dq' Go(r, q', E)p, (q'),
(2)

p, (q) = V+(q) + dq'K(q, q')p, (q'), (3)

Here K(q, q') = —6 AGO(r(q), r(q'), E)/6n and V~(q) =
2&GO(r(q), r', E)/Bn. In K, r(q) is evaluated directly on
the boundary not as a limit from inside. Equation (3)
was found by Balian and Bloch [10] in their seminal
paper on the distribution of eigenvalues of billiards. The
homogeneous version of Eq. (3) was studied in Ref. [4].
The operator K(q, q') is well behaved for all values of
its arguments including q = q', if the billiard boundary is
smooth. (Special account must be made of kinks on the
boundary, and, indeed, there are diffraction effects coming
from such features. )

Equation (3) is a Fredholm integral equation of the
second kind. Since this theory is well known [11], we
simply write down the result, in operator (continuous
matrix) notation,

G(r, r', E) = Go(r, r', E)

+ V (r, E)
~

IV+(r', E). (4)i1 —KE )
We have defined V (r, E, q) = —2' Go(r, r(q), E). The
operator K acts on the Hilbert space of functions on
BB;V are vectors in this space, depending parametrically
on r, r', as shown. They, and K, depend parametrically on

where p, (q) = BG(r(q), r', E)/Bn is the outward normal
derivative of G with respect to its first argument. The
arguments r' and E are regarded as parameters in p, .
Distance along the boundary is given by q, r(q) is the
position vector at the boundary point q, and we shorten
the notation to write q where we sometimes mean r(q).
A knowledge of p, therefore reduces the problem to
quadrature s.

We find an equation for p, by taking the normal
derivative of Eq. (2) and letting the argument r approach
a boundary point. q. This yields

the energy E, as well. The operator inverse is formal, but
for sufficiently nice operators K (as generally occur for
billiards), Fredholm theory rigorously gives the inverse.
Introducing the bookkeeping parameter A the result is
(1 —AK) ' = N(A)/D(A), where the operator N and the
Fredholm determinant D are expressed as absolutely
convergent series for any A, N(A) = P, ON„A", D(A) =
g D„A". The result for D„ is

&(qi qi) &(q i q. )

dq] - . . dq„det

K(q„qi) K(q„q„)
(~)

G(z) = lim
P 1

—+cc

A(E)dE
z —E

and Dp = 1. Since K and BB are finite, a standard
application of Hadamard* s inequality [11] establishes
that D is an entire function of A (and N an entire
operator valued function). N is related to D by N„=
g"„oK" 'D„= 1D„+ KN„

We now obtain the analyticity properties for the exact
solution which were used in the QCA [5]. Since K and
BB are finite, if D 4 0 there is a unique solution p, of
Eq. (3) [11]. It follows that p, is indeed the normal
derivative of the wanted Green's function, for E 4 E .
Thus p, is independent of the choice of Gp which is so far
determined only up to an arbitrary symmetrical solution of
the homogeneous Helmholtz equation. However, K and
V+ do depend on the choice of Gp.

Regarding D as a function of energy, for A = 1, it is
clear that the eigenvalues E are zeros of D for which p,
has poles. If Gp is not carefully chosen, however, there
can be spurious zeros z, of D, which may be real or
complex, and these are a nuisance. It turns out that for
two cases, outgoing or incoming boundary conditions on
Go (Hankel functions of the first or second kind), there are
no spurious zeros [4], so we make this choice.

The kernel K is an analytic function of complex
momentum p, except for a branch cut which can be
taken from (—~, 0). For Imp ~ +~, K 0 and D 1.
It is a property of Hankel functions that Ho (e'"x) =(])

Ho (x). Thus, p —e' p replaces the outgoing wave
(2)

Green's function by the one for incoming waves. For real
p, this gives therefore D(e' p) = D(p). Since K is ana-
lytic in p, so is D„and thus D, as an absolutely conver-
gent sum of analytic functions, is itself analytic. Consid-
ering D now as a function of complex energy z = p2/2,
we see that D(z) is analytic except for a branch cut along
the positive real E axis. Then D(E —i g) = D(E + i g).
We introduce G(z) = [D(z)] 'dD(z)/dz Like D, G is.
an analytic function of z, except for poles and a cut
along the positive real axis, where it has a pure imaginary
discontinuity, for E 4 E, G(E + i g) —G(E —i g) =
2iImG(E + i Tt) —= 2~ip(E) Since G(z) 0 for z.

there is a representation for z not real and positive,
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Since D(z) has zeros at z = E, G has poles there, so A

is of the form A(E) = P 6(E —E ) —p(E). Thus p(E)
is such that the limit in Eq. (6) converges. Clearly, p is a
smoothed density of states, presumably nearly that given
by the QCA. Now integrate G using Eq. (6) to find

D(z) = lim exp[+(z, E~)] 1—
gl —+oc

where +(z, E~) = —fp' dE p(E) ln(1 —z/E). The
logarithm is cut on (—~, 0) so the exponential has
the phase e —' ~~@ for z E ~ ig, where 3V(E) =
fp dE p(E) Let A(.z) —= D(z) exp[+~(z)], where +~(z) =
lime, [z g~ e, E ' —+(z, Et)]. The discontinuity on
the real axis due to +& exactly cancels that coming from

Therefore, A(z) is an entire function of z, manifestly
real on the real axis, with zeros on the spectrum.

As a function of p, therefore, A(p) is entire, real for
real p, and h(p) = 5(—p). This is precisely the ana-
lyticity and functional relation needed in a celebrated pa-
per [5] (BK), for the SA, constructed by manipulating the
quasiclassical series over periodic orbits, as discussed be-
low. Our b, (p), which is exactly defined, formally re-
duces to the spectral determinant SA in the quasiclassical
limit. (The next steps of BK can be formally made also,
but we need the QCA to interpret them as a resurgence
phenomenon. )

So far, everything is exact. There is no restriction to
hard chaos or indeed to any particular classical limit.
Previous work has treated just the QCA, and then only
D, expressed as a product, the Dg, or 5, the real spectral
determinant. A similar treatment of the numerator N(A)
makes its first appearance in this paper. We make three
levels of QCA, Al, A2, and A3.

The first level is to approximate K(q, q') from the
asymptotic form of the Hankel function for k~r(q, q')

~
&& 1,

where r(q, q') = r(q) —r(q'). It is expressed [4]
in terms of Bogomolny's [6] operator T, K(q, q') =
T(q, q') ([n p(/(n' . p))'t, where

D (A = 1). The expansion coefficients are obtained
by use of the Smithies-Plemelj recursion relation
[11], expressing D, in terms of the traces of K (or
T) by D„= n—'g"„,o, D„-, with o.„=TrK" =
f f„,dq, . dq, K(p&, q 2). . K(q„q&). Now, using the
QCA for K, Tr K' = Tr T', for n ) 1 although Tr K 4 0
while TrT = 0. This, however, has no effect on the
results, since, according to theory [11], DIKE = e 'DITl
and the two versions of N also differ by this nonvanishing
factor. We remark that at level QCA1 the series for N
and D are absolutely convergent.

Note that the expression for D„ is independent of rep
resentation. Using the Fourier series representation on
the boundary, it is found that only a finite number N of
Fourier components are finite when evaluated in station-
ary phase (S4), where N = k f„~dq/~. In this context,
S4& and the QCA are equivalent. At this level, QCA2,
we thus have D, = N ~

= 0, for n ~ N, so the series is
not only convergent, it is finite. Thus T is in QCA effec-
tively an N X N unitary matrix Tt = T '. Using this,
Bogomolny [6] showed that the upper half of the series
for D is "resurgent" [5], i.e., it is the complex conju-
gate of the lower half, except for a phase. (More gen-
erally, resurgence is the idea that high order terms in a
series contain information also contained in the low order
terms. ) Let A = A, so with these assumptions D(A) =
det(1 —AT ') = D(A ')A~e '@, where e'@ = det( —T).
This implies D„= Dz „e'@, so (for N odd) D(A = 1) =
g„=p (D„+ D„e'+). This saves finding the most dif-
ficult half of the D's, and allows the definition of a
manifestly real function, 5 = e '@~ D. The phase is, of
course, 4 = 27r 3V, in view of our earlier consideration.

The coefficients N„are also resurgent in quite a
novel way. Using N(A) = D(A)/(1 —AT) gives N(A)~ =
—D(A/A 'T)/(1 —A 'T) = —A~ 'e '@TN(A '). Equat-
ing coefficients of A" gives

Nn = —e' T N~ —n —] .irI

T(q, q') = —(2mi6) [8 S(q, q')/Bq&q'] e'

and 5 = p ~r(q, q') ~. Here p = r(q, q') and n, n' are the unit
normals at q, q'. This expression for K is valid only if the
n - p do not vanish. Such a case can occur if a classical or-
bit is tangent to the boundary, as can happen for nonconvex
billiards. This again is expected to exhibit diffraction ef-
fects not accounted for in the simplest QCA. Leaving this
aside, we recall that Bogomolny [6] obtains a QCA expres-
sion whose zeros are an approximation to the spectrum:
det[l —T(E)] = 0. It has been found that a discretiza-
tion and numerical evaluation yields excellent results in
the cases considered [12].

Although Bogomolny does not precisely define
this infinite-dimensional determinant, we can treat
it as a Fredholm determinant and compare it with

In particular, N~ ~
= —T e' . We have consequently

succeeded in expressing high powers of T based on the
outgoing Green's function, by low powers of Tt based
on the incoming Green's function.

Resurgence is a property of the QCA. Evaluated
in S4, the somewhat surprising result, TtU+ = Ut is
obtained. Further, the expression V (r) Vt (r') is a
contribution of a direct orbit (not bouncing from the
boundary) from r to r'. Thus the contribution of Nz
can be directly related to the contribution of Go in

Eq. (4). The exploitation of resurgence, that the high
terms of certain series contains essential information
of the same type found in the low terms, is becoming
popular in mathematics. We have used this technique
to obtain the result of Agam and Fishman [13] for scars
and the Wigner function by a simpler and more rigorous
method [14].
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So far, we have used the QCA to find expressions
for K or T. A third level QCA3 can be obtained by
doing the trace integrals cr„by S4 for n ) 1, with the
result o.„=g„„„n„e'"~( )t"/( det(M" —1))', where

P

p labels the primitive periodic orbits with n„bounces
from the boundary, r is the number of repetitions,
M" is the rth power of the monodromy matrix for
the primitive orbit, and the action Sp = pL p is the
momentum times the length of the orbit. The Dg is [8,15]
Z(E) = P„op (1 —A 't ~e't ~ t"). (Such a simple
expression for Z is only possible if the eigenvalues of Mp
are A„, A ', i.e., all orbits are hyperbolically unstable,
the hard chaos case. ) The product P»o is not convergent
[8], although the product over m can be carried out by
use of Euler's identity [5]. The result is given meaning
by expanding into a series (which is not absolutely
convergent) and grouping and ordering (and analytically
continuing) the resulting terms into "composite" periodic
orbits. Our D is formally the same series and D„
is a particular way of collecting terms into composite
periodic orbits, that is, orbits the sum of whose periods,
including repetitions measured in numbers of reflections
from the boundary, add up to composite period n (Su.ch
a collection is also called a pseudo-orbit [5], but we prefer
Smilansky's more descriptive terminology. ) Grouping
terms according to D„guarantees absolute convergence
unless the S4 approximation to the exact integrals for
o.„ fails drastically and disagrees with QCA1 and QCA2.
Whether the QCA ceases to be adequate at some large
n in this evaluation, however, is an interesting and open
question.

In general, the improvement in convergence gained for
D is also gained for N. We remark that if a "curvature
expansion'* [9] effectively shortens the series for D, it
likewise shortens the series for N. This is because all
long orbits are close to periodic orbits and can thus be
approximated by them. The Fredholm method provides a
way to systematize this approximation.

To summarize, the Fredholm method applied to bil-
liards provides a mathematically exact formulation whose
QCA limit can be compared with various approximations
obtained by making the QCA at an early stage. In par-
ticular, the Fredholrn determinant is a rigorously defined
version of the Dg.

The method goes beyond the study of the spectrum
and in effect extends the methods used for studying the
determinant to the entire Green's function. The Fredholm
method is not restricted to billiards or exact formulations.

If the QCA is made for Bogomolny's T at an early stage,
the Fredholm method can be applied to a wide variety
of cases (and a variety of surfaces of section), including
scattering systems, mesoscopic systems, and correlation
functions, whether or not these are chaotic in the classical
limit. Many insights can be gained, some of which we
report in a separate communication.
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