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Recent neutron interferometry experiments have been interpreted as demonstrating a new topological
phenomenon similar in principle to the usual Aharonov-Bohm (AB) effect, but with the neutron’s
magnetic moment replacing the electron’s charge. We show that he new phenomenon, called scalar AB
(SAB) effect, follows from an ordinary local interaction, contrary to the usual AB effect, and we argue
that the SAB effect is not a topological effect by any useful definition. We find that SAB actually
measures an apparently novel spin autocorrelation whose operator equations of motion contain the local
torque in the magnetic field. We note that the same remarks apply to the Aharonov-Casher effect.

PACS numbers: 03.65.Bz, 03.75.Dg, 42.50.—p

In the Aharonov-Bohm effect (AB) [1,2], idealized in
Fig. 1, the motion of an electron in a Mach-Zehnder in-
terferometer is influenced by electromagnetic fields even
though the electron experiences no local, contemporane-
ous Maxwell field. That comes about because the Hamil-
tonian

H=:"(p+%a) -ev )

2m c

contains the gauge fields V and A, which have nonvanish-
ing values at some points in the domain of the electron’s
position r. For the AB effect, we can ignore the elec-
tron’s spin. Then the operator equations of motion for the
only observables are
mv =0, 2
those of a free particle, containing no electromagnetic
fields. However, in quantum mechanics the equations
of motion alone do not determine the dynamics. In the
magnetic AB effect [Fig. 1(a)], the partial waves in the
two arms of the interferometer acquire a relative phase
shift 6 ¢ given by

r=wv,
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where @ is the flux through the solenoid.
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In the electric AB effect [Fig. 1(b)], the two arms of
the interferometer carry the electron through conducting
cylinders that shield the electron from an electric field.
While the split wave packet is deep within one cylinder
or the other, potentials V; and V, are applied to the two
cylinders. That causes a relative phase shift given by

S¢p = %(AV)T, 4)
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FIG. 1. (a) Magnetic Aharonov-Bohm effect. The shaded
area is a solenoid. (b) Electric Aharonov-Bohm effect.
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where AV =V, — V, and 7 is the length of the time
interval during which AV is different from zero.

In both cases, the relative phase shift is measured by
the outbound intensities

I, = Icos®(dp), I, = Isin*(d¢). 5)

The AB effect is nonlocal in that the electron experiences
no force and exchanges no momentum, energy, or angular
momentum with the electromagnetic field, and in that the
Hamiltonian, the equations of motion, and the commuta-
tion relations involve no local contemporaneous Maxwell
at the electron’s position.

AB is a topological effect in that it requires the electron
to be confined to a multiply connected region and in that
there is no objective way to relate a phase shift to any
particular place or to either arm of the interferometer. The
phase shift between any two Feynman amplitudes depends
only upon the difference between the topological winding
numbers n of their paths,

S = (Sn)-ek%

The relative phase shift depends upon an integral whose
integrand is not gauge invariant and not observable. The
only gauge invariant observable is the integral of this
integrand over a closed path, and its value is proportional
to the magnetic flux enclosed by this path. This effect
is manifestly nonlocal, since its value depends upon
a physical quantity in a region outside the domain of
integration. It is topological in the sense that it depends
only upon the topology of the path with reference to the
enclosed magnetic flux. In an interferometer, the winding
numbers of the two arms differ by unity. The general role
of the winding numbers is more obvious in the magnetic
scattering geometry, illustrated in Fig. 2. The differences
in phase shift between different paths are gauge invariant,
but no measurable phase shift can be assigned to any one
path because [ A - dr along any one path depends upon
the choice of gauge. The same is true of the electric AB
effect. The potential difference AV is gauge invariant,
but the potential V on one of the cylinders can be given
any value by choice of gauge. Therefore there is no
objective way to associate the phase shift with one arm
of the interferometer or the other.

In a recent series of experiments, Allman et al. [3,4]
passed unpolarized neutrons through a Mach-Zehnder
interferometer one arm of which traversed a magnetic

n=0

FIG. 2. Three Feynman paths from X, to X, with winding
numbers.
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field B, as shown schematically in Fig. 3. The intensities
of the two outbound beams were observed to obey Eq. (5),
where now the relative phase shift is given by

5¢=—Z~BT, (6)

where u is the neutron’s magnetic moment, B is the
magnetic field strength, and 7 is the time spent in the
magnetic field. The experimenters interpreted their results
as demonstrating a new topological effect which they
named scalar Aharonov-Bohm effect (SAB). That claim
was refuted by one of us [5], who pointed to ambiguities
introduced by the use of unpolarized neutrons. (The same
point had been made earlier by Zeilinger [6], and the
meaning of this kind of experiment was also discussed
by Anandan [7,8].)

Here we will analyze the ideal SAB experiment, also
illustrated by Fig. 3, in which the neutron is to be
polarized with o, = +1, where the z direction is that of
the magnetic field, assumed to be spatially uniform; B(r)
vanishes except during a time interval of length = when
it has the value B; and the neutron is assumed to be in
the magnetic field region throughout the time interval 7
so that it never experiences a field gradient. The relation
of the z direction to the plane of Fig. 3 is immaterial. The
purposes of this analysis are to show that using polarized
neutrons will not help and to explain how SAB differs in
principle from AB.

In SAB, the Hamiltonian

H = p?/2m — uo - B(t) @)

contains the Maxwell field B, in contrast to AB, where
the Hamiltonian (1) contains only the gauge fields. The
operator equations of motion
ho.

5 o = uo X B() (8)
contain the local contemporaneous Maxwell field, in
contrast to AB, where no electromagnetic field enters the
equation of motion of any measurable quantity.

However, it is argued that SAB resembles the electric
AB effect (EAB) in that role of B in the SAB Hamiltonian
(7) is very much that of a potential acting on the magnetic
moment and in that no force acts on the neutron. Also,
the consequences of Eq. (8) are possibly uncertain because
(ox(1)) = {oy(r)) = 0 in a state with o, = +1. In terms

Z

FIG. 3. Interferometer for polarized neutrons.
area is the magnetic field region.
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of the Schrodinger equation, one may replace o, by the
number +1 in the Hamiltonian (7) so that it becomes

H = p*/2m — uB(1), ©)

and restrict the Hilbert space to what appears as a one-
component wave function with no dynamical variables
other that x and v. Then the mathematical analogy with
EAB is complete, and one has the illusion [3,4] that SAB is
a nonlocal, topological effect in the same sense as is EAB.

That reasoning gets the correct phase shift but it leads
to an incorrect interpretation of the experiment. In SAB,
the relative phase shift depends upon an integral whose
integrand is locally gauge invariant and observable at
every point in the path of the neutron. The integrand is
proportional to the magnetic field directly in the path of
the neutron and does not depend upon a physical quantity
in a region outside that path. SAB does not have the
same topological character as AB, because the SAB phase
shift depends upon the local field along the path and not
upon any winding number expressing the topology of a
path around a region in which the particle does not move.
The operator equations of motion do involve the local,
contemporaneous Maxwell field.

Moreover, in quantum mechanics, the spin is a dynami-
cal variable, and it cannot simply be replaced by a
number. The right-hand side of Eq. (8) is a torque L on
the neutron whose expectation value vanishes at all times
but whose fluctuations do not vanish:

(Ly) =(Ly) =0,

10
(L2 = (L) = (mB). (1o

Then an equal and opposite angular momentum must
be transmitted to the local electromagnetic field, again
with zero expectation but with fluctuations correlated
with those of the neutron’s angular momentum so that
the total angular momentum is conserved. Those field
angular momentum fluctuations are not observable by a
measurement on the field in the limit of a classical field,
but they are observable in principle in a finite field.

The effect of the torque on the neutron is exposed by
considering the spin autocorrelation operators

C(t) = o (0)o (1) + oy(0)o,(r) + Hel],
S(t) = 1[o:(0)oy (1) — 0y (0)o. (1) + Hee.].

(11)

These are Hermitian operators, measurable in principle,
and they commute with o so there is no equation about
their significance in a state of definite o,. Their equations
of motion,

. 2uB
Cy = == SO, (12)

2uB

S(t) = —=C).

contain the local contemporaneous Maxwell field, and the
solutions are given by

C(t) = cos(wt),
S(t) = —sin(wt),

(13)

where
w =2uB/h. (14)

These spin correlation operators cannot be described clas-
sically for spin 1/2, but they can be described simply
in the context of the usual semiclassical vector model.
There, the vectors o (0) and o (¢) are depicted as precess-
ing on a cone with random phase so that their projections
on the xy plane vanish on the average. Equations (12)
and (13) show that the relative angle 9(7) = wt between
the two projections in changed by the action of the local
torque.

When the two partial waves merge at the final mirror of
the interferometer in Fig. 3, their spin correlation angle is

H1) = wrT = 26¢. (15)

The intensities in the two outgoing beams are, of course,
given by the same Eqs. (5). However, now the effect has
been described as the measurement of a spin correlation.
The factor 2 in Eq. (15) is the usual factor for rotations of
spin 1/2.

None of this is really surprising from either a classical
or a quantum mechanical point of view. A spinning
particle is represented classically as a symmetric rotor
whose angular momentum precesses in a magnetic field.
The precession frequency w is independent of the angle
between the rotation axis and the magnetic field. That is
why the spin autocorrelations are independent of the spin
state in Eqgs. (13). Classically, the only exceptions are the
two states wherein the spin points exactly in the +z or
the —z direction, a set of measure zero for which the x
and y components vanish and the precession frequency
has no meaning. However, if one defines the precession
frequency by any limiting process, is again has the value
. In quantum mechanics only the expectation values
of o, and o, vanish. Their fluctuations are large, equal
in magnitude to o,. In quantum mechanics, the local
magnetic field separates the energies of the two states of
definite o, and that energy separation gives rise to the
precession of o, and o, which becomes visible in the
spin autocorrelation functions.

In conclusion, scalar Aharonov-Bohm effect has been
described as the ordinary action of a magnetic field on the
magnetic moment of the neutron, causing the neutron to
precess in the ordinary way. The return torque transmits
angular momentum to the local contemporaneous mag-
netic field in the ordinary way. Locality in the sense of
Faraday and Maxwell is preserved to the extent that it ever
is in quantum mechanics.

We have identified measurable dynamical variables, the
spin autocorrelation operators, whose operator equations
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of motion obey the classical laws. The conventional
semiclassical vector model shows exactly how the torque
in the magnetic field acts on the spin autocorrelation.

SAB is not a topological effect in the same sense as
is the AB effect, in spite of the mathematical similarity
of SAB and electric AB effect. In SAB, we know exactly
where the neutron experienced the torque that changed the
outcome of the experiment, and no gauge transformation
can obscure that information.

Allman et al. [4] defined a topological effect as one in
which the relative phase shift 6 ¢ is independent of the
energy of the neutron. That criterion was justified by a
result of Zeilinger [6,9], who, however, showed only that
the energy independence is a necessary condition for a
force-free effect.

The trouble with using that criterion in the present
context can be seen by considering a problem in which the
magnetic field in one arm of the interferometer is replaced
by an optical phase shifter whose index of refraction is
made to depend upon the time and to differ from unity
only during the time the neutron is inside some box, for
instance, by pumping a refractive gas in and out. In
principle, the phase shift can be made independent of the
energy over the experimental range. No electromagnetic
field is involved. The energy-independence criterion
would describe the influence of that phase shifter as a
topological effect.

We have chosen to discuss the Aharonov-Bohm effect
on the magnetic moment of a spin-1/2 particle in terms
of the SAB effect because of the experimental interest in
that example. However, the discussion is identical for the
Aharonov-Casher (AC) effect [10]. In AC, a neutron with
o, = +1 traverses an external electric field in the x-y
plane. In an adequate approximation, the AC Hamiltonian
is given by Eq. (7), where now B is the magnetic field in
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the rest frame of the neutron, given by
B = P/mc X E(r). (16)

For a neutron whose velocity is confined to the x-y plane,
B points in the z direction, and interference effects not
ascribable to forces, like those in SAB, are predicted.
However, the torques, spin autocorrelations, and angular
momentum exchange with the local Maxwell field appear
to be the same as in SAB, so it follows that AC, like SAB,
is neither a nonlocal nor a topological effect.

This work is supported in part by the U.S. Department
of Energy, Nuclear Physics Division, under Contract
No. W-31-109-ENG-38.

[1] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

[2] M. Peshkin and A. Tonomura, The Aharonov-Bohm Effect,
Lecture Notes in Physics Vol. 340 (Springer-Verlag,
Berlin, 1989).

[3] B.E. Allman et al., Phys. Rev. Lett. 68, 2409 (1992).

[4] B.E. Allman et al., Phys. Rev. A 48, 1799 (1993).

[5] M. Peshkin, Phys. Rev. Lett. 69, 2017 (1992).

[6] A. Zeilinger, Fundamental Aspects of Quantum Theory,
edited by V. Gorini and A. Frigerio, NATO ASI, Ser. B,
Vol. 144 (Plenum Press, New York, 1986), p. 331.

[7] J. Anandan, Phys. Rev. Lett. 48, 1660 (1982).

[8] J. Anandan, in Proceedings of the 3rd International
Symposium Foundations of Quantum Mechanics in the
Light of New Technology, edited by S. Kobayashi, H.
Ezawa, Y. Murayama, and S. Nomura (Physical Society
of Japan, Tokyo, 1989), p. 98.

[9] G. Badurek et al., Phys. Rev. Lett. 71, 307 (1993).

[10] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319
(1984); see also A.S. Goldhaber, Phys. Rev. Lett. 62, 482
(1989).



