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Structure Factor Scaling during Irreversible Cluster-Cluster Aggregation
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We present a simple model to describe the evolution of the structure factor during irreversible
diffusion limited cluster-cluster aggregation. For growing compact clusters, the scattered intensity is
predicted to scale as in spinodal decomposition, i.e., as q" I(q/q ) For . fractal clusters, the scattered

df
intensity is predicted to apparently scale in qm l(q/q„, ) only in late stages. We find an excellent
agreement with the experimental results of Carpineti and Giglio [Phys. Rev. Lett. 6S, 3327 (1992)] and
with novel data from a dynamic simulation.

PACS numbers: 64.60.Cn, 05.40.+j, 82.70.Dd

Recently, very low angle static light scattering [1] and
direct imaging [2] experiments on solutions of polystyrene
spheres have addressed the issue of the spatial distribution
of clusters during diffusion limited cluster-cluster aggre-
gation (DLCA) [3]. Two unpredicted and puzzling results
of these experimental works have stimulated a resurgence
of interest in the cluster aggregation field and new connec-
tions with the dynamics of phase separation. Indeed, the
results of [1] and [2] show that an (unexpected) spatial
correlation among clusters arises as a result of an irre-
versible DLCA process, as revealed by the presence of
a peak at a finite wave vector q in the scattered inten-
sity I(q, t). Even more interestingly, they also show that

I(q, t) at different late times can be superimposed if plot-
ted as q (t) 'I(q/q (t)) vs q/q, i.e., in a form similar
to the one observed in late stage spinodal decomposition
once the space dimensionality d is substituted by the frac-
tal dimension df, suggesting the presence of common ele-
ments between DLCA and phase separation.

In this Letter, we present a simple theory to explain the
origin and the evolution of the experimentally detected
cluster-cluster correlation during DLCA and discuss the
relation with the late stage of spinodal decomposition.
The two quantities we focus on are (i) the average number
of clusters per unit volume n(r, t) at distance r from
the origin, knowing that one cluster is at the origin, and

(ii) the size of the average cluster of mass M(t) and radius
R(t) [4]. The time dependence of these two quantities is
given by the following two coupled differential equations

Bn ~2 n dM
(1)

Bt M dt

Bn= DMSd
r =2R(t)

M(t) = M(0)[R(t)/R(0)] f,

(2)
with boundary conditions n(R, t) = 0 and n(~, t) =
noM(0)/M(t) and initial conditions n(r, 0) = no for r ~
2R(0). D is the diffusion coefficient which we assume
to be mass dependent (D —M ~) and Sd is 2, 27rR,
47rR~ in d = 1,2,3, respectively. Equation (1) indicates
that n(r, t) may change due to (i) diffusion in the pres-

F(x) = erfc(x), Ei(—x ),
2

e I
—~~ erf(x) . (4)

The associated solution for the boundary motion is

R(s) = As'/'. (5)

Two important considerations are in order: (i) In all
dimensions, n(r, s) monotonically increases from zero at
the sticky boundary to n(~, t) Thus, a dep. letion region
exists around each cluster. Since the nucleus growth is
controlled by the same exponent as the growth of the
depletion region, scaling in time is expected. (ii) From
the relation between s and t we find M(t) —t"t~~ i'"i, the
same exponent predicted by the Smoluchowski approach
for compact clusters [3].

n(r, t) is by definition the product of the average
number density times the radial distribution function [10].
The associated cluster structure factor is [10]

S(q, s) = 1 + [n(r, s) —n(~, s)]e'~' dr . (6)

ence of a concentration gradient or (ii) increase of the
average cluster size (i.e., aggregation of clusters) [5].
Equation (2) reveals that the cluster radius increase is
controlled by the mass fiux at the boundary [6]. The
moving boundary position is at r = 2R(t), i.e., at the sum
of the radii of the two coalescing clusters. The boundary
conditions indicate that the cluster boundary R(t) is
sticky, in agreement with the assumption of irreversible
aggregation, and that very distant clusters are randomly
distributed in space. The initial conditions indicate that
the system is homogeneous in space.

In the case of compact cluster structure (i.e., df = d),
n(r, t) and M(t) can be calculated exactly, by writing
ds = D(M)dt and noting the analogy with the so-called
moving boundary Stefan problem [7]. The solution is a
function of the scaled variable r/2 /s[8],

M(0) F(r/2s'/ )
'M(s) F(X)

for r ~ 2R(s) and n(r, s) = 0 for r ~ 2R(s), where A is
a constant to be determined [9]. For d = 1, 2, and 3,
respectively, F(x) is given by
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SBD(q r)

At small q, S(q, s) goes as q~, as imposed by mass
conservation. Moreover, being n(r, s) a function of the
scaled variable r/2s'/~, also S(q, s) scales in time in qs'/~

or, by Eq. (5), in qR(s). The experimentally measured
total scattered intensity I(q, t) can be approximated as the
product of the cluster form factor P(q, t), well known for
any d, and of the previously calculated S(q, r). P(q, t) is
also a function of qR, i.e., of the same scaled variable
of S(q, t). This implies that the total scattered intensity
will also be a scaled function of qR. Moreover, since
P(q, r) is proportional to the mass of the scatterer, a plot
of I(qR(t))/M(t) vs qR(t) will show a remarkable data
collapse, of the same kind as the one observed in late
stage spinodal decomposition [11].

To test the model in detail for compact clusters we
performed a Brownian dynamics (BD) simulation of a
one-dimensional coagulating system [12]. We calculate
the structure factor StiD(q, t), the cluster form factor
PtiD(q, r), and the total scattered intensity IBD(q, t) from
the simulation, according to the following equations [13]:

1
N 2

In D (q, t) = — g e' "' ' (7)
W

1
n, (t)

p I„"«"-'"
) (s&

n, (r)(M~)
n, (t) II,

P (q, t) = —P g e'~"'~'~ ), i9)
k=1 i=1

where r; (t) is the position of the ith monomer, r, „(t)
and mk are, respectively, the center of mass and mass of
cluster k, and n, (t) is the number of clusters at time r.

Figure 1 shows S~D compared with the theoretical pre-
dictions, Eqs. (3)—(6). The inset shows the comparison
in real space. As predicted by Eq. (3) the data from the
simulation collapse on the same curve once plotted as

a function of the scaled variable qR(t) or r/R(t). The
agreement is excellent, especially if one considers that
there are no adjustable parameters. Symbols in Fig. 2
are IBD/M(t) as a function of the scaled variable 2qR(t),
while the full line is the product of S(q, t) shown in Fig. 1

times P(q, t). P(q, t) is calculated averaging the form
factor of a d = 1 compact cluster over the polydisper-
sity obtained from the BD simulation. The experimental
data and the analytical solutions for S(q, t) and P(q, t) are
shown in a log-log scale in the inset. It is worth noting
that P(q, t) controls the behavior of the scattered intensity
to the right of the peak, while S(q, t) is responsible for
the low q limit. Another important consideration stems
from the fact that the scaled P(q, t) is independent from
the initial number density no. Instead, the ratio between
the cluster density and no does change the scaled S(q, t).
Thus the scaling function for I(q, t) will depend on no.

When the growing cluster is a fractal dM/dt—
R(4f 'ldR/dr and does not cancel any longer the surface
term on the right-hand side of Eq. (2). The addition of the
extra R"f term changes the time dependence of the clus-
ter growth compared to the time dependence of the growth
of the depletion region. As a consequence, the n(r, t)
profile does not scale anymore with R(t) (see the inset of
Fig. 3), and we are forced to analyze the model solving
numerically Eqs. (1) and (2). Before doing so, we note
that while in the nonfractal case the average density of
the cluster does not change during the aggregation, in the
case of fractal clusters the density decreases with R"f ".
Thus, there is a time tf, and an associated radius Rf, at
which the average density reaches the value of the initial
density. When R = Rf clusters fill the space completely,
and the growth process stops. We also note that the
structure of Eqs. (1) and (2) does not change when written
in terms of the dimensionless variable r/RI Thus, the.
model predicts that at constant R(t)/RI one should ob-
serve the same scattering pattern, independently from no
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FIG. 1. S(q, t) as a function of the scaling variable 2qR(t).
The full line is the analytical prediction of Eq. (4), while the
symbols are from the d = 1 BD simulation. The time interval
spans 10 integration steps. Polydispersity has been taken into
account increasing the cluster density in the analytical solution
by (M')/(M)'. The inset shows the corresponding profile of
n(r, t) in the scaled variable r/2R(t).

2qR

FIG. 2. Scaled intensity as a function of the scaling variable
2qR(t). Full line is the theoretical prediction while the symbols
are from the BD simulation. The inset shows I» in log-log
scale. The dotted line is P(2qR(t), t)/M(t) while the long-
dashed line is S(2qR(t), t)
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modification of the boundary conditions from sticky to
partially ref]ecting, will cause the squeezing of S(q, t)
toward q = 0. On moving from DLCA toward RLCA
the I(q) peak position will thus shift toward smaller
and smaller q values, eventually moving out from the
available experimental window. Such behavior has been
recently observed [2,19].

In the end, it is worth pointing out the relations between
irreversible coagulation and phase separation. Irreversible
aggregation can be seen as a phase separation process
in deep quench limit (from infinite to zero temperature),
when separation proceeds only along a path of decreasing
total energy and cluster breaking is very rare. In such
conditions, mechanisms like the evaporation-condensation
are less effective than diffusion and coalescence of the
entire clusters. Indeed, the M(t) dependence we find is the
same obtained from the Binder-Stauffer diffusion-reaction
mechanism for droplet coarsening [20], without imposing
any ad hoc requirement of self-similarity in the droplet
configuration. The q and q

4 limit in I(q, t) in the late
stage decomposition in deep quench also coincides with
the 1(q, t) behavior during aggregation predicted by our
model in three dimensions. Our exact results suggest
that the scaling function depends strongly on the initial
conditions and coarsening process.
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