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Solution of the Two-impurity, Two-Channel Kondo Model
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We solve the two-impurity, two-channel Kondo model using a combination of conformal invariance
and bosonization techniques. In the odd-even symmetric case, the RKKY interaction is exactly
marginal, resulting in a line of non-Fermi-liquid fixed points. Explicit formulas are given for the
critical exponents and for the finite-size spectrum, which depend continuously on a single parameter.
The marginal line spans a range of values of the RKKY coupling I which goes from the infinitely

strong ferromagnetic point I = +~ to a finite antiferromagnetic critical value I;„(0 beyond which a
Fermi liquid is recovered. When the odd-even symmetry is broken, the marginal line is unstable for
ferromagnetic I, while for antiferromagnetic I it extends into a manifold of fixed points.

PACS numbers: 75.20.Hr, 75.30.Hx, 75.30.Mb

The effect of interimpurity interactions on quantum
impurity models possessing a non-Fermi-liquid ground
state is of crucial importance for the possible experimental
realizations of such systems [1], and for understanding
non-Fermi-liquid behavior in lattice models of correlated
fermions starting from a local point of view.

The two-impurity Kondo model with two channels of
conduction electrons is one of the simplest models where
this problem can be addressed. For a single impurity,
this model is controlled by a nontrivial fixed point [2],
resulting in a specific heat coefficient C/T and suscep-
tibility g; ~ diverging logarithmically as T 0, and a
universal finite-size spectrum of excitation energies dif-
fering from the free-fermion form [3]. The corresponding
two-impurity model is the simplest situation which brings
in the competition between the formation of this nontriv-
ial Kondo state and the ordering of the impurities via the
RKKY interaction. It has been recently studied by nu-

merical renormalization-group (NRG) methods [4—6].
In this Letter, we present an analytic solution of the

low-energy universal properties of this model using a
combination of conformal field theory [3,7] and bosoniza-
tion methods [8,9]. We find that the RKKY interaction
(as well as other interimpurity couplings) is a marginal
perturbation, giving rise to a continuous family of non-
Fermi-liquid fixed points. The finite-size spectrum and
the critical properties vary continuously with the strength
of the interaction. We obtain analytic formulas for this
dependence. These results are in excellent agreement with
recent NRG results [4—6]. They should be contrasted
with the single-channel case in which, in the presence
of particle-hole symmetry, Kondo screening always dom-
inates over RKKY ordering or vice versa, resulting in two
stable Fermi liquid fixed points separated by an unstable
nontrivial critical point [10,7].

We formulate the model in terms of left-moving (chiral)
fermions tltt; (x) on the full axis —~ ( x ( +~. l = 1, 2
is an index labeling the two impurity sites, i = 1, 2 is a
channel index, and n is a spin index. The Hamiltonian is

written as

dx P„(x) Pt; (x)t
Bx

0 = Lvp
li o.

+ J+(Sl + S2) [Jt(0) + J2(o)]

+ J (Si + S2) p[pt; (0) 2 p2;p(0)
i,nP

+ A;. (0) 2'Pt;p(0)]

—IS) S2.

P U;, Pt, ,
U~'~ E SU(2).

J

When J 4 0, only 0& = 02 and U~'~ = U are allowed.
Let us look first at the case of two decoupled impurities

(3)

In this formula, Jt(x) = g; p Pt; (x) 2 Pt;p(x) denotes
the spin current at position x for species l. Our notations
follow closely those of Ref. [7]. The combinations P~ 2

correspond to (P, ~ P, )/~2, where P, , stand for the
fermion fields which are even or odd with respect to
the midpoint between impurities. A parity transformation
exchanges the indices l = 1, 2 for both impurity spins
and conduction electrons. In order to make contact with
the couplings I, , „, used in Ref. [4], let us note the
identifications J ~ I, J ~ I, + I, and 1 ~ I, —
I, .

We shall start by identifying the global symmetries of
the Hamiltonian. For most of this Letter we shall con-
centrate on the case J = 0, corresponding to a Hamil-
tonian invariant under odd-even exchange (I, = I „). H
has a higher symmetry in that case, with independent
charge and channel (or "fiavor") transformations allowed
forl = 1, 2,

(2)
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(each one interacting with two conduction channels)
obtained by setting I = 0 and 1+ = J in addition to
J = 0. In that case, H has independent spin-rotation
symmetry,

(~)
V p0ip,

P

Sa g Rab(V(l))Sb
b

where R'"(V) = I/2tr( o'V obV. t) (a, b = x, y, z) is the
adjoint representation of V C SU(2). Hence, two decou-
pled two-channel Kondo models have global symmetry
[SU(2),p,„eSU(2)ngyop S U(1),h„g, ] . Coupling the two
impurities (I 4 O, J+ 4 J ) while keeping J = 0 leaves
unchanged the independent charge and Aavor symmetries,
but reduces the spin symmetry to the diagonal SU(2) cor-
responding to V ' = V( ~ in Eq. (4).

At a fixed point, these global symmetries are promoted
to local conformal symmetries [11]. For decoupled im-

purities, the symmetry algebra consists in two copies
of a product of Kac-Moody algebra for spin, channel,
and charge: [SU2(2), e SU2(2)f U(1),], where SUk(2)
stands for the level-k SU(2) Kac-Moody algebra. When
coupling the impurities with J = 0, the diagonal SU(2)
symmetry of the spin sector gives rise to a SU4(2) alge-
bra. The generators of this algebra are the sum of the

generators of the two SUq(2), for each impurity, that is,
the sum of the spin currents J((x) + jq(x). Hence we

must understand how the product SU2(2), SU2(2), can
be decomposed into SU4(2), plus some residual degrees
of freedom. The answer is given by the so-called coset
construction [12],

SU2(2), SU2(2), = SU4(2), e A(2, 2) .

The algebra A(2, 2) turns out to be an N = 1 supercon-
formal unitary model [11,13] corresponding to the m = 4
member of the discrete series with central charge c =
2[1 —8/m(m + 2)], and thus has c = 1. This construc-3

tion generalizes to the two-channel case, the one made by
Aleck and Ludwig in their solution of the one-channel
two-impurity problem [7]. There, the coset construction
is SU~(2), SU((2), = SU2(2), A(1, 1), where the al-
gebra A(1, 1) is actually an Ising model with c = 1/2.

This coset construction can be understood more explic-
itly when dealing with spin currents (i.e. , for the adjoint
representation of the algebra). Let us first recall [11]that

the SU2(2) spin current J&'(x) ('a = x, y, z) for a given
l = 1, 2 can be represented in terms of three Majorana (i.e.,
real) fermions ~&' ' as follows:

J( (x) i eabcx& 4/ (6)

This is particularly transparent when using the Emery-
Kivelson bosonization approach to the two-channel
Kondo model [8,9], in which case g' = sin@„~» =
cos W„~' = cos 4,f where 4„+sf are the boson

fields introduced in Ref. [8] corresponding to spin and
spin-Aavor degrees of freedom. Here, we are dealing
with two copies of SU2(2) and hence with six Majorana
fermions. We combine them into three complex fermions
and bosonize these new degrees of freedom as

~,'(x) + ig, (x) ~ e' a = x, y, z.

Our conventions are such that e'" has dimension k2/2.
In terms of these fields, the total spin current corre-

sponding to the diagonal SU4(2) algebra reads: J' =
J( + J2 ——cos(4» —4, ) (and cyclic permutations). It
is convenient to introduce three linear combinations
of boson fields, 4 = (4, + 4» + 4&,)/~3, p = (4
&b»)/~2, and v = (4, + 4» —24, )/~6. In terms of
these combinations, the components of the total spin cur-
rent read:

J =cos
2

J' = cos(J2p, ).

f p+~3,v)= cos
)

(8)

Note that 4 does not enter these expressions. Hence
the two bosons p„v are sufficient to describe the SU4(2)
algebra (as expected from its central charge c = 2) and
4& corresponds to the residual A(2, 2) degree of freedom
(c = 1). The central charge c = 3/2 + 3/2 has thus
been distributed as c = 2 + 1 in the coset construction
Eq. (5). Thus, a very useful explicit realization of the
algebra A(2, 2) as a free field theory of a single compact
chiral boson 4 of radius R = ~3/2 has been found
(4 has periodicity 2vrR) This algebr. a is actually an
"orbifold" theory, meaning that 4 and —4 must be
identified [11]. This implies [11] that, in addition to the
operators e —'("~3+ l2~3~+ and 8"4 (with n, m integers),
A(2, 2) contains two operators of dimension 1/16 which
do not have a simple boson representation. The full set
of primary operators of the A(2, 2) algebra thus reads: (0)
I:1], (—)I:e=' " '] (—) (—) (-)I:e=' '] (-)I:e=' ' "]
( —,6 + 2), ( —,6), (6 + z) [e-'~ I~3], (1) [B4]. The number
in parentheses labels the operator by its dimension, and
the boson representation is given in brackets, when it
exists.

We now consider the effect of turning on the couplings
I and 6J =—1+ —J away from the decoupled impurity
fixed point (keeping J = 0, i.e., I, = I,). I is marginal
to lowest order (since S~ 2 have dimension 1/2), while
BJ has dimension 3/2 and is irrelevant. Furthermore, it
can be shown [14] using the approach of Ref. [8] that the
operator of lowest dimension corresponding to S~ (Sq) can
be written at the decoupled fixed point as a ~ g ~ (a2~q),
where a~ 2 are local real fermions (i.e., of dimension
0) needed to ensure proper commutations. Hence the
perturbing term of lower dimension associated with the
RKKY interaction reads jdta~a2~~ ~2. In the bosonic
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language above, this translates into an induced boundary
term in the A(2, 2) sector of the Hamiltonian,

VF
HA(2, 2)

=
4~

&ac& & I~aC
dx + I dtd ——

~ (0), (9)2) ~

where we have set dt = (a~ + iaq)/ J2, and I is some
(nonuniversal) function of I and J+ —J, with I =
I + O(I, (J+ —J )2) to lowest order. Hence the RKKY
coupling is associated with a dimension 1 operator and is
an exactly marginal perturbation. As shown below, this
implies the existence of a line offixed points extending on
both sides of the decoupled impurity point.

The Hamiltonian (9) is similar to the x-ray edge Hamil-
tonian in the bosonized form [15]. Here also the in-

teracting Hamiltonian is related to the noninteracting
one by a canonical transformation, HA(22) = UpHI=DUp,
where Uq —= exp[i(26/m. ) (dtd —z)4(0)] corresponding
to a phase shift I'i/vr = 1/2uF. Maximal scattering is ob-
tained for 6/vr = 6 „/7r =— 1/2~3, as appropriate for a
boson of radius R = J3/2. In the following we shall
use the normalized parameter x —= 6/6, „=2~36/vr.
x ) 0 (x ( 0) corresponds to ferromagnetic (antiferro-
magnetic) RKKY.

We can investigate the operator content and low-
temperature critical behavior of physical quantities for
nonzero I, 6J (corresponding to a specific value of x), us-

ing the fact that a given operator 8 is changed to Uq 8 Uz
under the action of Uq. Spin correlations can be ob-
tained from the identification S& ~ S2 ~ de —' + H.c.
After the canonical transformation, these operators ac-
quire a dimension 1/3 + (1 ~ x)2/6, leading to a singular
behavior of the uniform susceptibility y; ~ T ~( ) on
the ferromagnetic side x ) 0 with a continuously vary-
ing exponent 8(x) = x(2 —x)/3. Similarly, the staggered
susceptibility behaves as y„= T ~( ) on the antifer-
romagnetic side x ( 0. g„(~, ~) is finite for x ) 0
(x ( 0). Hence, we find that critical exponents depend
continuously on x, establishing the existence of a line
of fixed points. In order to find the precise extension of
this line, and the low-temperature behavior of the specific
heat along it, we look for the leading irrelevant perturba-
tions compatible with all symmetries of the model. At the
decoupled impurities point, one has two such operators
of dimension 3/2 which read 8+ = (S~ ~ &2) . (J- ~
J,). Their bosonized form involves de ' + H.c. for
8 and dte '+I~~g, g, J, + H.c. for 8+, where g,
is the adjoint operator of the SU4(2) algebra. For a
nonzero x, they are changed into de ' ~+'/~ + H.c.
and d e '~ ' ' ~~+, g, J, + H.c., respectively. Hence
the leading irrelevant operator corresponds to 6+ of di-
mension 6+ = 4/3 + (1 —x) /6 for x ) 0, and to 8
of dimension 5 = 3(1 + x/3)2/2 for x ( 0. This leads
to C/T = T 0~'& and to a universal (x-dependent) Wilson
ratio for x ) 0, while a different behavior C/T = T
with n(x) = —x(6 + x)/3 is found on the antiferromag-

netic side x ( 0. Also, the marginal line extends all
the way from x = 0 up to infinitely strong ferromagnetic
coupling I = +~ corresponding to maximum scattering
x = +1 (since 8~ never becomes relevant). On the an-
tiferromagnetic side x ( 0, however, 8 becomes rele-
vant for x (x;„=—~6 —3 = —0.55. The marginal line
ends at x = x;„, and the system Aows to the "strong-
antiferromagnetic' (Fermi liquid) fixed point where the
two impurities bind into a singlet state [4]. Note that,
at the infinitely strong ferromagnetic fixed point x = +1,
the critical behavior derived above coincides with that [3]
of the spin-l, four-channel Kondo problem (with spin di-
mension 1/3 and leading irrelevant operator of dimension
4/3), in agreement with the conjecture made in Ref. [4]
and with the physical picture that the two impurities bind
into an S = 1 triplet state at this point.

We have also investigated the finite-size spectrum of
the model at a given fixed point along the marginal line,
as a function of x. The method consists in first clas-
sifying the states of the decoupled impurity fixed point

according to the SU4(2), A(2, 2) e (SU2(2)& U(1),.)~
decomposition, and then acting on each state with the trans-
formation Uq. This modifies the contribution of the A(2, 2)
sector to the total energy of the state. The dimension
1/16 of the twist operators can be shown [14] to be un-

changed by the action of Uz. Under multiplication by Uz,
the dimension of an operator e'~ is changed to 2 (k ~
6/7r)2, for dtd —1/2 = ~1/2, respectively. Hence, we
also need to associate with each state an eigenvalue of
dtd —1/2 = ~1/2 to decide which of the two possible
new dimensions is produced. This can be done, when con-
structing the spectrum at the decoupled point, by keeping
track of the relative sign between the impurity spin and the
total spin of the state. More precisely, the impurity spin

is proportional to the adjoint operator of SU2(2) up to a
sign which depends on the state. The product of these two
signs for l = 1, 2 yields the eigenvalue of 2dtd —1. In
particular, this "selection rule" is essential to insure that
the spectrum of the S = 1 four-channel model is obtained
atx = +1.

The resulting spectrum for the first few low-lying
states is displayed in Table I. Note that the ground state
is the triplet of lowest energy for x ) 0 (ferromagnetic
coupling), and the singlet of lowest energy for x ( 0 (an-
tiferromagnetic coupling). Accordingly, the normalized
excitation energy of a given state, LAE/7ruF (with L the
radial length of the bulk system and VF the Fermi veloc-
ity), is obtained from the total dimension b, „, given in
Table I, by substracting from 5„, the dimension 5&,&

as-
sociated with the appropriate ground state. The resulting
formulas are in excellent agreement with recent numeri-
cal renormalization group results of Ingersent and Jones
obtained by the numerical renormalization group method
[6]. A detailed comparison with these results will be
made in a future publication. We believe that the proce-
dure above gives a way of continuously deforming the
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TABLE I. Finite-size spectrum of low-lying states. j is the total spin quantum number, j, ( jz) is the SU(2)t~, „,„quantum number
for l = 1 (l = 2), and g, (Q2) is the charge. o. is the sign of dtd —1/2 = ~1/2. The third column displays the A(2, 2) operator
associated with each eigenstate at the decoupled impurities fixed point (I = 0, i.e. , x = 0), whereas the sixth column displays the
corresponding operator at the strong ferromagnetic fixed point (I = +~, i.e., x = +1). The degeneracy of each state is displayed
in the last column, while A„t is the total conformal dimension at arbitrary x. The normalized excitation energies are given by

gSLIJ E/7rv F ——A,o,
—k,ot.

( ji, Oi, j2 Q2)

(0, 0, 0, 0)

(0, 0, 0, 0)

(2, ~1,0, 0) and 1 ~ 2

(0, ~2, 0, 0), (1, 0, 0, 0), and 1 ~ 2

(0, ~2, 0, 0), (1, 0, 0, 0), and 1 ~ 2

A(2, 2) decoupled

(gs)

(0)
(-, )

—,(1+ -', )'
l (l —x)2
3 24

1

2
s x2+8 24

—, + s(1 —
—,)

l 3 X

S (I+x)2
6 24

A(2, 2) strong ferro. Deg.

1

3

16
16
10
30

boundary condition of the full conformal field theory in-
volved. These deformations do not correspond, however,
to a fusion with an operator inside the spectrum. Even
for going directly from x = 0 to x = +1, we have to fol-
low the orbifold fusion rule with (1/24) supplemented by
a projection which corresponds to the above "selection
rule. "

Finally, we mention that the effect of a nonzero
coupling J (even-odd asymmetry) can be analyzed along
the same lines [14]. It gives rise to a relevant perturbation
of dimension 5/8 + 3(1 —2x/3)2/8 on the ferromagnetic
side (x ) 0), thus destabilizing the marginal line in favor
of a spin-l, two-channel Fermi liquid fixed point, as found
in [4]. For antiferromagnetic RKKY interactions (x ( 0),
the leading operators generated are marginal, and the line
extends into a surface of non-Fermi-liquid fixed points
with continuously varying properties depending on tvvo

phase shifts, in agreement with recent NRG findings [5].
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