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Finite-Temperature Magnetism in the Hubbard Model
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A novel and physically transparent approach to the finite-temperature Hubbard model at half filling
is proposed. It recovers not only the correct dimensionality dependence of antiferromagnetism but,
in d = 3, interpolates properly between weak and strong coupling interaction strengths for the Neel
temperature, and enables extraction of related thermodynamic properties.

PACS numbers: 75.10.Hk

The canonical model of interacting fermions on a lattice
is the Hubbard model, specified by the Hamiltonian

H = t P— c; c, + Ugnitnit, (1)
(ij /, cr l

with the (ij) sum here over nearest neighbor (NN) sites
on a d-dimensional hypercubic lattice. It bridges itinerant
and localized descriptions of quantum magnetism, reduc-
ing at half filling in the strong coupling limit U = U/t ~
ixi to the spin-~ antiferromagnetic (AF) Heisenberg model
of localized spins,

HHeis =
p g JijSi Sj, (2)

i,j(jwi)
with solely NN exchange couplings J;, —= J = 4t2/U
It thus provides a vital testbed for theories of finite-
temperature band magnetism, where considerable
progress has occurred for nearly two decades; see, e.g. ,

[1—6], and references therein. These theories employ
functional integral methods, most within the static ap-
proximation; their aim is to determine the U-T phase
diagram (and associated thermodynamic properties), i.e.,

the Neel temperature Tjj(U) for loss of AF long-ranged
order (AFLRO). While interpolating with some success
between weak and strong coupling U, the theories share
common limitations; for example, all yield the molecu-
lar field result for the Heisenberg model as U

Tjj
" = zt2/U, with z = 2d the lattice coordination

number. This is skewed for d = 3, where the accepted
[3,4,7,8] Tjj ——3 83t /U from h. igh-temperature series
expansions, and for d = 2, clearly cannot predict the well
known absence of AFLRO at any T ) 0.

We describe here a new, simple, and physically trans-
parent theory for the half-filled Hubbard model at finite
T, consisting of two essential steps as sketched below.
(i) An approximate mapping of the low-energy excitations
of the Hubbard model (1) on to those of a Heisenberg
model (2) is made for finite U ~ 0, and with no constraint
to NN exchange couplings, the (J;j(U)) being determined
directly. (ii) Thermodynamic properties of the effective
HH„, are then examined. We focus here mainly on
Tjj(U), as found by a standard molecular field treatment
[9] of the U-dependent HH„, to give Tz "(U), followed by
a self-consistent Onsager reaction field correction [9,10],

leading to a much improved description of short-ranged
magnetic ordering and a strong (and d-dependent) renor-
malization of Tjj(U) below Tjj (U) The r. esultant the-

ory recovers the correct d dependence of AFLRO, as is
mentioned above. In d = 3 it interpolates properly be-
tween weak and strong coupling U. For example, we find

Tjj(U) = 3 96t /.U as U ~ ix, and that second and third
NN exchange couplings play an important role for weak
to moderate U. With a caveat later discussed, Monte
Carlo (MC) results [7,8] for the d = 3 half-filled Hubbard
model are also well reproduced. Moreover, the theory,
in addition, naturally permits extraction of the full range
of thermodynamic and/or magnetic properties (and hence
more extensive comparison with MC results).

We first recall the simplest approach to a half-
filled Hubbard model at T = 0. This begins with an
unrestricted Hartree-Fock (UHF) mean-field approxima-
tion: The lattice is bipartite, so the UHF ground state
is a two-sublattice Neel AF for all U ~ 0, with the
UHF local moment p, , —=2(s;, )HF found from the usual
self-consistent gap equation [11]. Linearized excitations
about the broken symmetry UHF state follow via a
familiar random phase approximation (RPA), transverse
spin excitations being of lowest energy as there is always
a gap for charge excitations. The effect of zero-point
transverse spin excitations in, e.g. , reducing the sublattice
magnetization from its UHF value, ~p;( =—~p, ), may then
be found by a one-loop calculation [11]. For d = 2
in particular, this approach is remarkably successful at
T = 0 for strong coupling: It gives exactly the results
of linear spin wave (LSW) theory [12] for the U
HH„„and agrees very well with MC results [13], e.g. ,

the sublattice magnetization reduction and ground state
energy. Qualitatively similar results are expected for
d ~ 3 (for d = 1, one-loop quantum spin fiuctuations
destroy AFLRO at T = 0 [11],as is correct).

Since there is a gap to charge and longitudinal spin
excitations for all U ~ 0, we expect the lowest energy
transverse spin excitations to be largely spin-wave-like
(save possibly for very small U). Our essential step (i)
above is thus, for any U ~ 0, (a) to construct a site
representation of the RPA equations of motion about
the finite-T UHF Neel state for the Hubbard model,
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and then (b) under the assumption (whose accuracy may
be verified) that the lowest N (= number of sites) of
the resultant transverse excitations are spin waves, to
decouple that N-dimensional subset of the RPA equations
which pertains to on-site spin deviations from the Neel
local moment axes. These are then compared to the LSW
equations of an arbitrary Heisenberg model as obtained
readily by a linearized Holstein-Primakoff transformation.
This yields directly an effective HH„, (2), with U-
dependent exchange couplings (J,, (U)) (whose accuracy
we do not expect to be sensitive to their extraction by
comparison of linearized theories, RPA and LSW). Full
details will be given elsewhere. We find

J;,(U) = 2lv;p, l['~ '];, ,

with lIM;l =—lp, (T)l the UHF Neel local moment magni-
tude found from the usual finite-T gap equation at the
chosen U, and [0~ '];, the inverse of the UHF static
(co = 0) transverse susceptibility matrix in a site repre-
sentation; from this the Fourier transform J(q) may be
found in closed analytical form. To check the accu-
racy of the approach, the full T = 0 RPA transverse spin
spectrum of the Hubbard model NT "(~) may be calcu-
lated at any U (via the RPA transverse susceptibility ma-
trix ~(~) = ~(cu) [1 —Uo~(cu)] '), and compared to
NT (cu) found by LSW on the effective HH„, (U). NT"

consists of a gapless low-cu spin-wave-like band con-
taining N excitations, separated by a gap from a band
of (N/2) (N —2) weakly renormalized Stoner-like exci-
tations centered on co —U. As U ~ the Stoner band
is effectively eliminated, and NT (uI) reduces to the ex-
act LSW spectrum NT of the U ~ NN HH„, But
the underlying success of the effective mapping for a very
wide U range arises because the spectral gap in NT per-
sists down to weak coupling U = U/t, of around 2 for
d = 3, the spin wave component of NT being well re-
produced by NT (co) for the effective HH„, (U).

The resultant NN, 2NN, and 3NN exchange couplings
for d. = 3 are shown in Fig. 1 as a function of U (at
T = 0). The bipartite lattice is composed of two disjoint
sublattices, and we find J;, ) 0 (( 0) for all sites j
on the opposite (same) sublattice to i, whence magnetic
ordering is always AF. JNN itself reaches a maximum
for U —9, after which it steadily approaches from below
the exact strong coupling asymptote for the half-filled
Hubbard model J = 4t /U. lJ2.NNl and J3.NN are always
an order of magnitude less than JNN, and correctly vanish
as U ~, but as we will see they play a significant role
for U ~ 15. Couplings beyond third NN play only a
minor role in practice.

To calculate the Neel temperature, step (ii) above, we
use first a standard [9] molecular field (MF) approxi-
mation to the effective HH„, (U), approaching the AF
phase from the high-T paramagnet. This gives Tv (U) =
4lJ(Q)l, with Q = n. the AF ordering vector [lJ(q)l is a

0.4- 0.03—

0.3-

maximum at q = n for all U]. By itself, this suffers from
the limitations previously described, reflecting an inade-
quate treatment of short-ranged magnetic ordering (SMO).
To alleviate this, a self-consistent Onsager reaction field
(ORF) correction [9,10] is employed: The reaction field
of a spin cannot contribute to its own alignment, and must
thus be removed from the MF. This improves greatly the
treatment of SMO. For an arbitrary AF HH„, it yields [9]

T (U) = T "(U)/G( = 1+) . (4)

Here G(s) —= ReG(E) with E = s + i0+, and G(E) =
N ' gq[E —J(q)/J(Q)] '. Mathematically, G(E) is
equivalent to the site-diagonal Green's function for
an arbitrary one-band tight-binding Hamiltonian in
d dimensions. Thus, crucially, G(s I +) diverges
logarithmically for d = 2 [14] (a result not confined
to NN J;,). From (4) the simple ORF treatment thus
predicts, for all U ) 0, the absence of AFLRO for any
T ) 0 in d = 2. Further, the G(s ~ I+) divergence
leads to an exponentially divergent spin correlation
length as T ~ TJv(U) = 0. For U ~ ~, this is given
by g(T) = C exp(AT& /2T) = C exp(2vrp, /T), with C
a T-independent constant and p, = J /4 the LSW spin
stiffness constant, in good agreement with the d = 2 pure
NN Heisenberg model [15].

Now consider the d = 3 simple cubic lattice where
G (s = 1) is finite. We calculated its U dependence
numerically; as U ~, we recover the known limit
[9] G(s = 1) = 1.5164. Figure 2 shows the resultant
T& (U) and the ORF T&(U) vs U. The effects of SMO
inherent in the ORF reduce markedly T~ below T&" for
all but the smallest interaction strengths. In the strong
coupling limit U ~ ~, T~ (U) 6t /U as expected.
In contrast, Ttv(U) ~ 3 96t /U, which . is within -3%
of the accepted strong coupling limit T~ = 3 83t /U.
mentioned above: The simple ORF again captures well
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FIG. 1. Nearest neighbor JNN/t vs U = U/t; the strong
coupling limit J = 4t /U is also shown. Inset: lJ2.»l and
J3 NN vs U.
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is still apparently far from the large coupling asymptote
T~ = 3.83t2/U (cf. also Fig. 1 for the 1;,).

To compare our results for the d = 3 Hubbard
model with the functional integral theories mentioned
earlier, Fig. 3 shows Ttv (U) for the single-site spin-
fluctuation (SSF) theory of Hubbard and Hasegawa [1];
the Gutzwiller-type variational approaches of Kake-
hashi, Fulde, and Samson [2] (VA) and, more recently,
Hasegawa [4] (HA); the SSF and VA results are taken
from [3]. For U ~ 10, SSF and VA essentially coincide
with our molecular field Ttv (U) (Fig. 2). But clearly
none do as well as T& in reproducing the MC results,
especially for weak to moderate coupling, U ~ 10. It
is also worth noting that T&" with J'j confined solely
to NN's, also shown in Fig. 3, bridges smoothly be-
tween SSF for U ~ 6 and HA for U ~ 10. Note again,
however, that none of these theories behaves correctly
in the strong coupling U limit, all reducing to the MF
asymptote.

We have focused mainly on the Neel temperature, one
of the hardest quantities to obtain from MC calcula-
tions. But our approximate mapping of the low-energy
excitations of the half-filled Hubbard model onto an ef-
fective HH, ;,(U) naturally enables extraction of the full
gamut of thermodynamic and/or magnetic properties, in-
cluding where appropriate U-dependent one-loop contri-
butions from transverse spin fluctuations (e.g. , energy,
specific heat, and staggered magnetization). These will
be detailed in an expanded paper. Here, for illustra-
tion, we consider the T dependence of the important spin
correlation functions (SCF) (s;,s,,) in the paramagnetic
regime. Figure 4 shows the NN, 2NN, and 3NN I(s;,s,, )I
vs T/t for fixed U = 12, compared to Hirsch's [7] MC
results on a 4 lattice (the NN and 3NN SCF's are al-
ways negative). Spin correlations beyond NN buildup
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FIG. 2. Neel temperature in d = 3. Curve A: Onsager re-
action field T~(U) Curve . B: molecular field T~MF(U) vs U.
Also shown are MC results [8] (circles), TNMF with solely
NN 1;, (dashed line), THF (dotted), and the U ~ ~ asymptotes
TM" = 6t2/U, and Tz = 3.96t2/U from the present theory.
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FIG. 3. Previous approximations for T~ in d = 3: SSF [1]
(dashed line), VA [2] (solid), and HA (point-dash). As U
all yield the MF limit. Also shown are MC results [8] (circles)
and our T~~F(U) for solely NN J;, (dotted).

the known limit, reached in practice for U ~ 15—20.
Moreover, in weak coupling the ORF (as well as MF)
Tz is also physically sound, as seen (Fig. 2) from the
temperature THF(U) at which the UHF local moment

~ p;(T)j vanishes (obtained simply from the finite-T UHF
gap equation). It is clear physically [see, e.g. , (3)] that
AFLRO can potentially occur only if local moments
persist, so Tz(U) must asymptotically approach THF(U)
as U ~ 0, as indeed is found. THF(U) itself naturally
sets an upper limit for applicability of our theory, but,
save for the lowest U ~ 2, it is far in excess of T~ or
Tz, as THF(U) —4U for large U, an asymptote reached
in practice for U ~ 4. The importance of second and
third NN exchange couplings is also clear in Fig. 2,
where we show Ttv "(U) obtained by constraint solely
to the NN J;,. The effect of couplings beyond purely
NN clearly increases T~ "(U) significantly for both weak
and moderate coupling strengths up to U —15 or so,
commensurate with Fig. 1 for the J;, . [Similar behavior
occurs for Tz(U); it is omitted for clarity. ]

Figure 2 also shows the Neel temperature of the Hub-
bard model on a simple cubic lattice, inferred from MC
by Scalettar et al. [8]; for U ~ 6—8, these results are re-
duced significantly from the earlier pioneering MC work
by Hirsch [7] on smaller (4 ) lattices. Our molecular field
Ttv (U) clearly agrees very well with Tz (U), lying within
MC error bars for all but two points (U = 10, 12, and even
here it is close). This is interesting, for Hasegawa [4] has
since argued that the method used to extract T& produces
the Weiss temperature (rather than the true Tv ) which is-
what is obtained from a MF theory —and thus still over-
estimates T&. While not wishing to enter the controversy
[3,4,8], our Tz does reproduce well the MC results, and
it is curious that, even for U as large as 20, the MC result
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model, and yields associated thermodynamic properties.
We add further that the underlying theory can also be
adapted more generally to the AF phase of a disordered
Hubbard model, as we will discuss in a later paper.
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FIG. 4. Spin correlation functions ~(s;,s,, ) ~
vs T/t in the

paramagnet, for U = 12; Tz(U) is marked by an arrow.
(a) Nearest neighbor, (b) 2NN, and (c) 3NN. Circles show
Hirsch's [7] 43 MC results.

only below T/t = 1. And the theory clearly agrees re-
markably well with MC results over a very wide T range
above the ORF Tv (U) = 0.3t (despite the extant dispar-
ity between TN and Ttv ), agreement being noticeably
poorer if the ORF contribution is omitted. As expected
from the discussion above, the good agreement weak-
ens (for the NN SCF) only for temperatures approaching
THF(U) = 3t (= 10T~) at which the UHF local moments
are thermally destroyed.

In summary, by the simple and physically transparent
expedient of mapping approximately the low-energy ex-
citations of a half-filled Hubbard model onto those of
an effective, U-dependent Heisenberg model, combined
with a thermal mean-field approximation which includes
an Onsager reaction field treatment of short-ranged mag-
netic ordering, we have proposed a theory which recovers
the correct d dependence of AFLRO, interpolates properly
for d = 3 between weak and strong coupling strengths in
describing the magnetic phase boundary of the Hubbard
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