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Mesoscopic Effects in Disordered Superconductors near H
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A theory of disordered superconductors near the upper critical field HY, is presented. It is shown that
the magnetic field dependences of critical temperatures 7.(H) in mesoscopic samples exhibit multiple
reentrant superconductor—normal-metal transitions. In the framework of mean field theory 7, of bulk
samples remains finite at any H and asymptotically approaches zero at large H. This means that at
zero temperature the upper critical magnetic field does not exist. The role of quantum fluctuations of

the phase of the order parameter is discussed.
PACS numbers: 74.62.—c, 74.80.Bj

The theory of the upper critical field H, in disordered
superconductors was developed a long time ago [1,2]. In
these papers HY was found as a magnetic field at which
the linear equation

A(r) = a[ dr' K(r,r)A(r") )

has solutions. Here A(r) is the superconducting order

parameter

K, xy=T Z Ge(r,r)\G_.(r,r'), )

="
G(r,r') is the Matsubara exact electron Green’s func-
tion [1] in the presence of the elastically scattering po-
tential, € = (2n + )T, n is an integer number, « is
the electron-electron interaction constant, and 7 is the
temperature. Averaging over realizations of random po-
tential leads to the equation

A@) = a ] dr' (K (e, 1)) (AGE) 3)

Here angular brackets () stand for averaging over
realizations of random potential. To get Eq. (2) one
has to assume the absence of correlations between
the two random quantities A(r) and K(r,r’). Quasi-
classical treatment of magnetic field (G(r,r’,H)) =
(Ge(r — r',0))expl(ie/ch)A(r) (r — r')] vyields further
simplification [1,2]. Here A(r) is the vector potential of
the magnetic field. The justification for this procedure
is that at |T — T.(0)] < T.(0) and H = 0 the electron
Green’s function (G.(r — r’,0)) ~ exp(—|r — r'|/lp)
decays exponentially as a function of [r — r/| at
[r — r’| > Iy, while A(r) changes over distances much
larger than [y. Here Iy = min[vp/T., 1], T.(0) is the
critical superconducting temperature at H = 0, v is the
Fermi velocity, and [ is the elastic electron mean free
path.

In the case of clean samples with [ = © at T = 0 and
H = 0 the electron Green’s function decays relatively
slowly (in the three-dimensional case it is inversely
proportional to |r — r’[), which makes it impossible to
treat the magnetic field quasiclassically and one has to
take into account the Landau quantization [3—7]. This
leads to the counterintuitive result [3,5—7] that at 7 = 0
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superconducting solutions of the BCS equations exist at
arbitrary high H.

On the other hand, in the case of disordered metals,
at T = 0 the exponential decay of the averaged Green’s
function (G.(r — r’)) ~ exp(—|r — r’|/l) originates from
the fact that the phase of G(r,r’) at |r — r/| > [ is ran-
dom, while its modulus decays with the same power of
[r — r'| as in the clean case [8—11]. This implies that the
above mentioned quasiclassical expression for the mag-
netic field dependence of the averaged Green’s functions
does not work well for the exact Green’s function. The
randomness in phase of G(r,r’) leads to mesoscopic fluc-
tuations of A(r). The mesoscopic fluctuations of super-
fluid density at H = 0, which originate from the fluctu-
ations of A(r), have been calculated in [12—14]. In the
case ppl/h > 1 they are small compared with the aver-
age superfluid density and give only small corrections to
observable quantities.

In this paper we consider the mesoscopic effects in dis-
ordered superconductors at small temperatures T << T(0)
and under magnetic fields H close to H?z. We show
that, in this case, the picture of the superconductor—
normal-metal transition is determined by the mesoscopic
fluctuations. In small samples the mesoscopic fluctua-
tions manifest themselves in multiple reentrant transi-
tions between the superconducting and normal states.
In this case the genuine upper critical field cannot be
uniquely defined and there are many H.,, which character-
ize these superconductor-metal and metal-superconductor
transitions as a function of H (see Fig. 1). In the case of
bulk samples at 7' = 0, due to the existence of the meso-
scopic fluctuations, superconducting solutions of mean
field theory exist in arbitrary H (see Fig. 2). This means
that although 7.(H) decreases with H it is never zero in
the framework of mean field theory. To find the genuine
H: at T = 0 one has to take into account the quantum
fluctuations of the phase of the order parameter. The ker-
nel K(r,r’) is a random quantity, which depends on reali-
zations of random potential. Although the “mesoscopic”
part of the kernel §K(r,r’) = [K(r,r') — (K(r — 1'))] <
K(r,r’) is relatively small, it nevertheless determines the
properties of superconductors at H ~ Hy,.
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FIG. 1. Qualitative picture of T.(H) in mesoscopic samples.

Let us consider the case of a two-dimensional super-
conducting film with a thickness L, <« &, = /D/T.(0) ~
Lyo,. Here & is the coherence length of a superconductor

atT = H =0, Ly, = \J mch/eHY, is the magnetic length

corresponding to HY, HY, is the upper critical field for
Eq. (3) calculated in Refs. [1,2], and D = vgl/3 is the
electron diffusion coefficient. Using perturbation theory
for Eq. (1) one can estimate the correction to Hfz as fol-
lows (5”02 =H., — H?z)l

5H02
HY,

- [ drdr' SK(r,r', HY + 8H.)Ao(m)Aor), (4

2
Ao(r) = Bexp|:—(|rL;HOr°’) :| 5)

Here Ay(r) is the solution of Eq. (3), at H = H?2, which
describes a superconducting droplet of a size of the order

of &y, with the center at ro, and B = 4/ l/LzL,zq. We define

T (O)
B
= V< (8He2 P>
= }
™
|
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FIG. 2. Qualitative picture of T.(H) in bulk samples.

H ., as the first point of superconductor-metal transition at
T = 0 (see Fig. 1).

Thus the fluctuations of the H., can be expressed in
terms of fluctuations of G.(r,r’), and we can use the
technique which has been developed for the description
of mesoscopic fluctuations in normal metals [8,15-17].
In the first order of perturbation theory, with respect
to fi/prl, the expression for the correlation function
(K(r,r)K(r;,r})) is given by the diagrams in Figs. 3(a),
3(b), and 3(c) where solid lines correspond to (G (r —
r’)), dashed lines correspond to the correlation function of
the scattering potential (7 /7v)8(r — r'), 7 = [/vr is the
elastic mean free path, and v is the density of states in
metal. The blocks of diagrams shown in Figs. 3(d) and
3(e) are called diffusion D, (r,r’) and Cooperon C,(r,r’),
respectively. The equation for the Cooperon has the form
[16]

{D(iar + 2C—eA(r))2 + iw}C(,,(r,r/) = éé(r —-r). (6)

The equation for D, (r,r’) is the same as Eq. (6) with
A(r) = 0. As aresult we have

|

((8Hp)*) TS
(H))? 2

S f dr dr' dr, dr} drs dry Ao(t)Ae(r)Ao(r) Ao(r])) X [Cower(Farrs)Corc(rars)

n,nl:voo

+ Do ae Do clews)] X | (10, + 2 A )Cacter) || (10, + 2 At oot e |

X D[(lﬂn + %A(U))Cze(r',l‘s)][(wn + %A(h))cze/(r{,ﬁ)] )

[

an estimate for fluctuations of H., between droplets which
are separated by the distance larger than &,. One can see
it by calculating the correlation function at |[r — r/| > &g:

(£0)*
(Irg — rol)*
lro — rgl
X exp(—L—T).

Using Eqgs. (6) and (7) at Ly > &, we get the estimate
((8H2)*)/(HY)? = y(e*/hGu)*. ®

Here Ly = min[L,Lr] = /D/T, L is the sample size,
Gy is the conductance of a sample of the size Ly,
which in the two-dimensional case does not depend on

H?z and of the order of oyL,, o9 = e?vD is the Drude
conductivity of the metal, and v ~ 1. Equation (8) gives

(8Ha(ro)S Ho(r))) ~ ((8He2)?)

)
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FIG. 3.

Diagrams
(6K(r,r')8K(r,r’)).
Green’s functions and dashed lines represent elastic scattering
potential.

representing the correlation function
Solid lines represent averaged electron

Since the expression on the right-hand side of Eq. (4)
[which we will call §k(H)] is a random function of
H, T.(H) is also a random function of H. This means
that, generally speaking, the magnetic field dependence
T.(H) corresponds to multiple superconductor—normal-
metal transitions and there are many critical magnetic
fields H.,(0) at T = 0. The dependence T.(H) is shown
qualitatively in Fig. 1.

It is important that the dependence of 6k(H + 8H) on
8H contains random oscillations with all periods larger
than ®,/L3, ®y = Ffic/e being the flux quanta. One can
see this, for example, from the power law decay of the
correlation function as a function of H at Ly << Lsy <
Ly:

Kok — sk(H + sHNP\ Lu | (Lﬂ)
(3k)?) "Ly L)

(10
Here Lsy = /®¢/8H and y; ~ 1. Equation (10) has
the same 6H dependence as the correlation function of
conductances of a point contact between semi-infinite
metals at different values of magnetic field [18].

The physical meaning of Eq. (10) is the following. The
random oscillations of §k(H + &6H) as a function of 6 H
are determined by the random interference of different
quasiclassical paths. The contribution into §k(H) of paths
traveling on a distance of the order of L. decays at
L. > &, as L2, while the sensitivity of this contribution
to the change of the magnetic field increases with L. as
H2L%/® at H2L?/®3 < 1 and saturates at H2L4/®§ >
1. As a result the main contribution into §k(8 H) comes
from the paths with L. ~ Lsg > & [9,18].

Therefore in large enough samples and at small temper-
atures, when Lo > Lsy- = &0(AGy/e?), there exists an
interval of magnetic fields near H?zz

SH* = H%(e*/hGy)?, (1)
where the reentrant transitions corresponding to 7. > 0
take place with the probability of the order of unity
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(see Fig. 1). Equation (10) implies also that at 6 H <
8H* the function k(H) can be viewed as the diffusion
trajectory of a particle with coordinate k(H) and H
plays the role of time. In this case the corresponding
diffusion coefficient is of the order of <(6k)2)/Hf.)2 =
(e2/hGy)?/HY and the mean free path of the order of
V{(8k)2) Eg/Lr ~ (e*/hGy)éy/Ly. Using the concept of
diffusion of the quantity k(H) in H space we can estimate
the amplitude of the order parameter A* at 7 < T,
and critical temperature 7., corresponding to a reentrant
transition A* ~ T, ~ T.(0) (e?/hGy)? (see Fig. 1). The
typical width of a reentrant transition is of the order
of SH*. At |H — HY%| > SH*, the reentrant transitions
are rare events which are described by the tail of the
distribution function of k(H). Thus we arrive at a picture
of superconducting droplets embedded into a normal
metal and connected by Josephson links with a critical
current J.. The characteristic distance between the droplets
is of the order of

Ro(H) = £O)[ f(H)] '~ (12)

Here f(H) is the probability of finding a superconducting
droplet.

We restrict ourselves to the consideration of high
enough magnetic fields, when Ry > &;. In this case the
average critical current (J.) ~ exp(—Ro/Ly — Ro/L7)
decays exponentially. It is important, however, that this
effect originates from the fact that signs of J. are random
while the typical value of J. does not decay exponentially
if Ry > Ly. One can estimate the typical value of J.(H)
by calculating the variance with the help of diagrams
shown in Figs. 3(a), 3(b), and 3(c).

KU — U2 ~ (eD/R3) exp(—Ro/Ly).  (13)

To arrive at Eq. (13) we used the fact that A* > D/R3.
Since the values of critical Josephson currents between
different superconducting droplets J.(Ry) have random
signs, the network of such droplets should demonstrate
spin glass behavior.One can estimate the critical transition
temperature between the normal and superconducting
glass states T.(H) as a temperature, which is of the order
of typical Josephson coupling energy E; = hlJ.|/2e:

T. ~ T f(H). (14)

The important consequence of Eq. (14) is that at 7.(H) <
T* = Tye?/hGy the curvature of T.(H) becomes positive,
as opposed to the conventional theory [1,2], where the
curvature is negative. The dependence T.(H) in bulk
samples is shown qualitatively in Fig. 2.

To calculate F(k, H) we used the method of nonlinear
o model which was developed in Ref. [19] and has been
used in Refs. [20,21] for the calculation of the distribution
function of mesoscopic fluctuations of conductance of
small samples. Since our calculations are basically the
same as that in Refs. [20,21], we only present the results
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of the calculations.
(FGy/e?)'/? we have

- L (1~ HY) L,
f(H) Erf|:mln< HY 12 . (15)

Here Erf(x) is the error function, u = In(o/o0y), and o is
the sample conductivity, which is different from o due to
weak localization corrections.

Results presented above for the two-dimensional case
can also be applied to the three-dimensional case with the
precision of the order of 1. The only differences with
the two-dimensional case are that in the three-dimensional
case Gy = 0¢&p and that the preexponential factor in
Eq. (13) should be replaced for (eD/R3)&y/Ro, which,
however, does not change Eq. (14) significantly.

It is important to note that at 7 = 0 even Zeeman
splitting of spin energy levels at uH > T.(0) does not
suppress superconductivity in disordered samples entirely.
One can see this from the fact that the value of ({k(H)]?)
given by diagrams shown in Figs. 3(a), 3(b), and 3(c) at
uH > T.(0) decreases only a factor of 2 compared with
the w(H) = 0 value considered above. Here w is the
Bohr magneton. The physical explanation of this result
is the following. In the case of pure samples, [ = o,
the Zeeman splitting leads to the necessity of pairing
electrons on the Fermi surface with different moduli of
momentums. The wave functions composing the pairs
at large enough splitting exhibit significantly different
spatial dependences which lead to the suppression of
superconductivity. However, if the g factor of electrons
is equal to 2 and, in the case of Landau quantization,
it is possible to pair electrons on the Fermi surface
with opposite spins on different Landau levels [6]. In
disordered samples with arbitrary g factor it is only a
question of probability of finding regions of the size &,
where at uwH > T.(0) the wave functions of electrons
of the Fermi surface with opposite spins exhibit similar
spatial dependences.

The conclusion that at 7 = 0 there are superconducting
solutions at arbitrary H looks paradoxical. We think
that a genuine H.(7T = 0) is determined by quantum
fluctuations of the phase of order parameter. The above
considered mesoscopic fluctuations of the order parameter
should be also reflected in mesoscopic fluctuations of
magnetization of small superconducting samples.

The positive curvature of T.(H) has been observed
both in high temperature superconductors [22,23] and
in conventional disordered superconductors [24]. We
think that the theory presented above may be useful for
interpretation of these data.
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