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Superconducting Coherence in a Vortex Line Liquid: Simulations with Finite A
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We carry out simulations of a lattice London superconductor in a magnetic field B, with a finite
magnetic penetration length A. We find that superconducting coherence parallel to B persists into the
vortex line liquid. We argue that the length scale relevant to this effect is A = Po/8' T .

PACS numbers: 74.60.Ge, 64.60.—i, 74.40.+k

In high T, superconductors, thermal fluctuations are
believed to melt the ground state vortex line lattice at
temperatures well below the mean field H, 2 line [1,2].
The resulting vortex line liquid has received intense
theoretical and experimental study. In particular, recent
"Ilux transformer" experiments [3,4] on YBCO show
that superconducting coherence parallel to the applied
magnetic field B exists over very long length scales well
into the vortex liquid.

To investigate the fluctuating vortex line system, nu-

rnerical simulations have been carried out. These either
have involved a simplified model of vortex line interac-
tions [5] or have used the approximation [6—8] that the
bare magnetic penetration length A = ~, so that the mag-
netic field B inside the superconductor is uniform. Such

: ~ simulations [8] show a sharp transition within the
vortex line liquid, corresponding to the onset of coherence
parallel to B. While this A = ~ model is suggested by
the large values of ~ = A/go in the high T, materials, it
may fail close to T„where the correlation length may ex-
ceed the finite bare A; thus the finite A model may display
different critical behavior from the A .-~ limit. To in-

vestigate this possibility, we present here new simulations
of a system of fluctuating vortex lines, in which we in-
clude the effect of magnetic screening on the vortex inter-
actions [9], due to a finite A. We investigate the presence
of superconducting coherence within the vortex line liq-
uid, and discuss the length scale relevant for this effect.

Our model is a discretized lattice superconductor in the
London limit [10]. For simplicity, we consider isotropic
couplings. Following Carneiro, Cavalcanti, and Gartner
[7], a duality transformation maps this model onto one of
interacting vortex lines, with Hamiltonian

= 27r JoA gn(r;) n(rj)G(r; —r~). (1)
I,J

Here n (r;)(tx = x, y, z) is the integer vorticity through
plaquette a at site r; of a cubic mesh of points, and G(r)
is the lattice London interaction, with Fourier transform

G = 1/(1 + A Q ), Q = g [2 —2cosq„]. (2)
p, =x,y, z

The coupling is Jp = (hosp/167r'A2, with Po the Ilux
quantum, and seo the spacing of the discrete mesh, which
we identify with the bare coherence length that determines

j~(q, ) = —Y„(q,) BA'„"'(q,) . (3)

We earlier derived [11] an expression for Y„(q,) in a
continuum London superconductor. The generalization to
the lattice superconductor is

4~2JpA2 (n (q, )n (—q, ))
VT 1 + A2Q~

(4)

where p. , v, and o are a cyclic permutation of x, y, and z,
and Q2 = 2 —2cosq, as q~, q = 0.

In the absence of vortices, Y~(q, ) = [Job ]Q /(1 +
A~Q2) describes the total screening of the Meissner state.
With vortices, an expansion in powers of Q~,

(n (q, )n (q„))= no + ni Q + nag + . , (5)

leads to an expression for Y~(q, ) at small q„in terms of a
renormalized coupling [JA ]~R and penetration length A~tt,

[J~']..Q'
I+a' g

'
p, R

(6)

with

[J& ]pR 4~ JpA

VT
=1- no, (7)

APR 4~2JO n1 noA2
1 +

A2 VT
(8)

yp

To see the meaning of y„and ApR, note that the
current j~(q„)produced by BA'"'(q, ) induces a magnetic
vector potential due to Ampere's law, which in our units
is [JoA ]Q2 BA'"d (q„)= j„(q,). The change in the total
magnetic field due to the external perturbation is therefore
given by BA"'(q, ) = BA'"~(q, ) + BA"'(q, ), or

2

(1 —&,) + y. . . aA;"(q, ). (9)Q+Att

the size of a vortex core. Henceforth, we measure length
in units of go, and temperature in units of Jo. Periodic
boundary conditions in all directions are taken.

To test for superconducting coherence, we consider the
helicity modulus Y~(q„)(where p, 4 v), defined as the
linear response coefficient giving the supercurrent j in-
duced by a transverse perturbation in the vector potential
of the externally applied magnetic field, 6A'„"(q„)ps,
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Thus a fraction 1 —y~ of BA'"'(q„)penetrates into the
material; the remaining fraction y~ is screened out, on the
length scale A„&.Equivalently, A„&is the length on which
fluctuations in the magnetic field decay to equilibrium.
For a perfect Meissner effect, y„=1 and A„& agrees
with the usual definition of the London penetration length
[12]. We therefore interpret I/A„s —p, ~ as the density
of superconducting electron pairs in direction p, , even in
the more general case of a partial Meissner effect in the
mixed state. Although Y~(q„)will have the same form
Eq. (6) in both the superconducting and the normal metal
state (with ordinary fluctuation diamagnetism), a transition
will be signaled some singularity in y~ and A„&.We focus
now on y„.

Consider a uniform applied H = Hz. Y (qY) and
Y~ (q, ) then describe the response to external fields
BH, (q~) and BH (q, ), which represent compression and
tilt perturbations of H, respectively. Correspondingly one
finds [11]

1 —y, = dB, /dH, and 1 —
yY

= dB, /dH, , (10)

where these susceptibilities are evaluated at the applied
field H. Since the high T, materials display strong fIuc-
tuation diamagnetism even in the normal state, it is unclear
whether or not y y will display a pronounced feature at the
superconducting transition.

For behavior along z, however, parallel to H, the criteria
for a superconducting transition is more clearly defined.
Y, (q ) describes the response to an external field 6H~(q, ),
representing a combined shear and tilt perturbation of the
uniform applied Hz In Ref. [11]w.e showed that for the
vortex line lattice one has y, = 1 and a perfect Meissner
screening. For a normal vortex line liquid, however, y, =
1 —dB /dH, « 1. Thus the transition to the normal
state is signaled by a discontinuous jump in y, from
unity. Expressed in terms of the expansion coefficients
of Eq. (5), we have superconducting coherence along the
held provided no = 0; for the normal state, n0 ~ 0.

For our Monte Carlo simulation, we start with a fixed
density f = B/@o of straight vortex lines parallel to
z, giving the ground state configuration for an internal
held Bz. Following Carneiro, Cavalcanti, and Garter
[7], we update the system, heating from the ground
state, by adding elementary closed vortex rings (a square
ring of unit area) with random orientation and position.
These excitations are accepted or rejected according
to the standard Metropolis algorithm. This provides
a complete sampling of phase space for the vortex
variables n(r;), subject to the constraints that vorticity
is locally conserved, and the average internal field 8 =
(@o/V) g; n(r;) = f@oi is constant.

Our simulations are for the case f = 1/15, whose
ground state on a cubic mesh is a close approximation to a
perfect triangular lattice. We choose A = 5, comparable
to the vortex line spacing a =—I/~f = 3.87. We study
system sizes I.& = 30 in the x-y plane, and L, = 15 and

where q& = (q„qY),for various T, and L, = 30. Below
T we see sharp Bragg peaks of a vortex line lattice.
Above T we see behavior characteristic of a liquid. T
is thus the melting transition. Since the discrete mesh
of our simulation acts like a periodic pinning potential
for vortices, T also coincides with a depinning of the
vortex lines. We believe that the drop in p y at T
is more a result of this depinning, rather than a direct
result of melting. We expect from Eq. (10) that y, Y

=
1 —dB, /dH, is finite above T, but this value is too
small for us to determine accurately.

With respect to coherence along H, we expect a
discontinuous jump in 7, from unity to 1 —dB, /dH, = 0
at T, . The finite width of the decrease observed in our
data is a finite size effect; we see that the transition
sharpens as L, increases. We therefore estimate T, = 2.0,
well into the vortex line liquid. This is the main result of
our simulations.

Recent flux transformer experiments on YBCO [3,4]
show that there is a temperature "T,h" below which vortex
line correlations parallel to H become comparable to the
thickness of the sample. T,h is clearly above the "T;„"
where resistivity transverse to H vanishes. Resistivity
parallel to H, however, appears [4] to vanish at T,h.
A similar conclusion concerning vortex line correlations
may be inferred from the measurements of Ref. [13],
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FIG. l. (n&, (q, )n„(—q, ))/L~~ vs q, = 2am/L~ (m integer) for
various T and L~ = L, = 30. Solid lines are a fit by Eq. (5).

30 parallel to H. Each data point is typically the result of
5000 sweeps to equilibrate, followed by 8—16000 sweeps
to compute averages, where each sweep refers to L~L,
attempts to add an elementary vortex ring.

In Fig. 1 we show a sample of our data, plotting
(nY(q, )nY( —

q )) vs q„for various T, and L, = 30. Fitting
by Eq. (5) through O(Q4) yields the solid curves, and
determines the parameters no and n~. Equation (7) then
gives the couplings y„,which we plot vs T in Fig. 2.
We see that y y decrease towards zero at T = 1.2, while

y, decreases at T,. = 2.0. We also show our results for
I., = 15.

In Fig. 3 we show intensity plots of vortex correlations
within the same plane perpendicular to B,
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creased. This is also consistent with our results for y,
in Fig. 2, where there is some suggestion that, in addition
to a sharpening of the transition as L, increases, Tc also
decreases. It is therefore important to note that there is
another length in the problem [2]

0.0 + ..gL A(T) =—Pp/87rT = (27r Jp/T)KA. (12)

-0.5
0.0 0.5 1.0 1.5 T 2.0 2.5 3.0 3.5

FIG. 2. y„vsT for L~ = 30 and L, = 15, 30. Sample error
bars are shown. y ~ decreases at T = 1.2; y, decreases at
T, = 2.0.

a) T = 0.50 b) T = 1.25

where the onset of pinning by twin grain boundaries is
shown to occur distinctly above a sharp first order melting
transition. If we identify T,h with our T„and T;„with
our T, our results are in complete accord with these
experimental findings.

We also tried to compute the lengths A~z, using Eq. (8)
and our fitted np and n1. However, the factor (n~-
np& )/y„ that appears in Eq. (8) is, in the region of the
transition, the quotient of two small numbers each with
large relative error. We were therefore unable to obtain
meaningful results for A~R.

Although we simulated with L, » A, one can still
question whether our results represent the true thermo-
dynamic limit. In particular, in Refs. [3,4] it was found
that T,h decreased towards T;„assample thickness L, in-

For our simulation, we have 30 = L, « A(T ) = 410.
It has been argued [14] that A determines the length

on which phase correlations C(r) —= (e'10" " ) decay in
the vortex line lattice; however, these same calculations
show that in the vortex liquid the decay length of C(r) is
comparable to the spacing between vortex lines a « L, .
Thus this analysis of C(r) does not indicate why A should
be an important length above T, where we continue to
see superconducting coherence.

Another possibility is suggested by Nelson's analogy
[1] between vortex lines and the imaginary time world
lines of 2D bosons. Nelson argued that there should
be a Kosterlitz-Thouless (KT) superfluid transition of the
analog bosons. For L, sufficiently large, this KT transition
would occur at a T, ( T, and so would be preempted by
the formation of the vortex line lattice. But for L, small
enough, T, ) T, and one has a new state intermediate
between the vortex line lattice and the normal vortex line
liquid [15]. We now restate our earlier calculation [11]of
this T, in order to show that the length which distinguishes
between these two possibilities is A(T )

As shown by Pollock and Ceperley [16), the 2D boson
superfluid density can be expressed in terms of the "wind-
ing number" W which is the net spatial distance traveled by
the ensemble of bosons as they travel down the time axis
of their world lines. One has pb"'" = mTb, „„(W~)/2h~.
According to the KT theory, the 2D superAuid transition
occurs at a universal value of p, "'",which translates into
the condition (W~) = 4/7r. In terms of vortex lines, W
just measures the net vorticity transverse to H [11]. We
thus have [17]

1
(W ) = lim z (nY(q, )n&( —q, )).

q 0L~
(13)

c) T = 1.60 d) T =2.10

FIG. 3. Intensity plot of S(q~) for several T and L~ =
L, = 30. (a) T = 0.50 ( T shows a lattice of Bragg peaks;
(b) T = 1.25 = T; (c) T & T = 1.60 & T, in the vortex line
liquid; and (d) T = 2.10 ) T,

Pp dH,
Tc 2

or
2m. L, dB

4 A(T)dH,
L, dB

This is precisely the same correlation as enters Y„
and, comparing with Eq. (7), we can write y, = 1—
[A(T)/L, ](W ). Thus pb"'" ~ (W ) = 0 implies y, = 1;
the normal boson Quid corresponds to a vortex line liquid
with coherence along H. pb"" ) 0 implies y, ( 1; the
boson superfluid corresponds to the normal vortex line
liquid [18].

We have shown [11] that for a normal vortex line liq-
uid, (n~(q, )nY( —q, )) = f L~L, T/c44(q, ), where c44(0) =
(B~/4~)dH, /dB, is the tilt modulus, and f = B/@p
Thus we conclude that (W~) = (W, + W ) = 2(W ) =
(87rL, T/@p)dB, /dH, . This yields
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For large B » H, i, dH, /dB, = 1. Thus for L, (
(4/rr)A(T ), one has T, ) T and hence a vortex line
liquid with superconducting coherence along H, inter-
mediate between the vortex line lattice, and the normal
vortex line liquid. Only for L, ) (4/m)A(T ) will this
intermediate state disappear [19]. For YBCO, with T
90 K, one has A(T ) = 1400 p, m, much thicker than the
samples (-50 p, m) in Refs. [3,4, 13].

We note that for B » H, i, A(T ) is a factor B/H, i

larger than the "entanglement" length originally proposed
by Nelson [1] as the criterion for the 2D boson superfluid
transition. This is because the notion of superAuidity,
as measured by W, does not precisely correspond to the
geometric notion of line entanglement. If just as many
lines wander to the right as wander to the left, one has
W = 0, although the lines may still be quite twisted and
geometrically entangled.

Finally, we note that for our model Eqs. (12) and (14)
would predict T, = (87rjpKA/Lz)T = 25, much higher
than the observed T, = 2.0. We believe that this results
from a breakdown of the boson analogy near our observed
T„due to the proliferation of thermally excited closed
vortex rings, and intersections between vortex lines, such
as cause the transition in a B = 0 model. This is clearly
the case for the A: ~ model [8], where A .-~ at fixed
Jp also means A -. ~. Equation (14) would then imply
T, = ~. The finite T, found in A = ~ simulations
[8] therefore indicates such a breakdown of the boson
analogy. Our present results concerning vortex ring
distributions and line intersections are similar to what was
found for A .-~ [8].

To conclude, we find from simulations with

L, «A(T ) (as is the case for recent experiments) that
superconducting coherence parallel to H persists into the
vortex line liquid state. We argue that this effect should
vanish once A(T ) ( L,
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