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Vv'e measure the momentm dependence of the superconducting gap along the Fermi surface of
Bi2Sr2CaCu20& by high resolution angle-resolved photoemission spectroscopy. The gap is large in
the vicinity of the M point (where I -M is along the Cu-0 bond), and small along the I -X and I—
Y (7r, ~) directions. However, the gap is not zero along these directions, but, within our accuracy,
becomes zero about 10' on either side of the (m, m. ) directions. We discuss the implications of these
results for the symmetry of the order parameter.

PACS nombers: 74.25.Jb, 71.25.Hc, 74.72.Hs, 79.60.Bm

Over the past few years, there has been a lively debate
in the literature [1]concerning the nature of the supercon-
ducting order parameter in the cuprate high temperature
superconductors. Low temperature penetration depth mea-
surements on YBa2Cu30695 indicate the existence of line
nodes in the energy gap [2]. There is an important open
question whether the position of these nodes is determined
by symmetry, as in the d-wave scenario, or not, as in the
anisotropic s-wave scenario. Using high energy resolu-
tion angle-resolved photoemission spectroscopy (ARPES)
on BizSr2CaCu20s (Bi2212) [3],we determine the full mo-
mentum dependence of the gap in the two irreducible quad-
rants of the Brillouin zone (BZ), and we see significant
anisotropy as in previous work [4,5]. We find that this
momentum dependence is nontrivial, with the energy gap
exhibiting two nodes on either side of the (vr, vr) directions
in contrast to the d-wave interpretation of Ref. [4]. The
simplest interpretation favors anisotropic s-wave pairing;
ho~ever, possible complications are discussed below.

The results presented here depend crucially on samples
of very high quality and the high energy resolution of the
spectrometer, obtained by using a commercial spectrome-
ter, but with improved electronics and shielding. The mea-
surements were carried out at the Synchrotron Radiation
Center, Wisconsin, using a high resolution 4-m normal in-
cidence monochromator with a resolving power of 104 at
10" photons/s. The crystals are grown by the traveling
solvent floating zone method using an infrared mirror fur-
nace. Typical samples have superconducting transitions
at 87 K and widths of 1 K, as determined by a SQUID
magnetometer. These single crystals have very low defect
densities, as evidenced by the sharp peaks in the rocking
curves in high resolution x-ray diffraction, which yield a
large structural coherence length of —1250 A. Most im-
portantly, from the point of view of ARPES measurements,
these crystals have very Hat surfaces after cleaving, as
measured by specular laser rejections, with no detectable

degradation of the laser's divergence. These properties re-
flect themselves in the ARPES energy distribution curves
(EDC's) as very sharp quasiparticle peaks with extremely
low background and substantial dispersion, which in turn
allows an accurate determination of the Fermi surface (FS)
and superconducting energy gap.

In Fig. 1(a) we show three normal-state EDC's ob-
I

tained at 95 K, at momentum intervals of 32th of the BZ
dimension along the I -Y symmetry line (I Y), with the
middle curve corresponding to k = kj;. This large dis-
persion requires high alignment accuracy: The specimens
are carefully oriented in the sample holder to an accuracy
of l by Laue diffraction. The orientation is further con-
firmed via the observed symmetry of sharp photoemission
features around high symmetry points. The crystals were
cleaved and measured in a vacuum of (5 X 10 '' Torr.
This is significant because residual gas adsorption affects
the measured values of the gap. We did not detect any
changes in the time it took to complete a set of spectra.

Figure 1(b) shows the FS obtained from normal-state
measurements at 95 K (open circles) [6]. The thick line
is the FS corresponding to a tight-binding fit [7] to the
dispersion data (not shown here) in the I Y quadrant. The
thin lines are ~q umklapps of the fundamental surface,
where q is the Bi2212 superlattice vector (0.21', . 012~)

[8]. These umklapp sheets show remarkable agreement
with other experimental FS crossings observed in the I Y

quadrant. We suggest that this is the origin of some of the
features attributed to magnetic scattering in earlier work
[9]. Note that only one fundamental FS is seen, implying
that the interlayer coupling is too weak to resolve the two
Cu-0 bands.

Figure 2 shows the experimental spectra obtained at
13 K at points on the FS labeled 1 through 17, shown
as filled circles in the rightmost panels. In each panel
we plot one energy distribution curve (EDC) of Bi2212,
and one spectrum from Pt [10] which is in electrical
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extremum along the I X and I Y directions, which cannot
be understood in the d 2 ~2 scenario even if a small
component of another symmetry were admixed, which
would simply move the node to one side of the (7r, 7r)
lines, but would not have nodes on both sides. Of course,
in the anisotropic s-wave scenario, there is no symmetry
restriction on the nodes. For instance, an extended s-wave
gap in general has two nodes per quadrant, consistent with
our data.

Therefore, if we ignore the superlattice, we come
to the conclusion that our data are consistent with the
anisotropic s-wave scenario. The superlattice, however,
complicates this simple interpretation in the I X quadrant.
It introduces the umklapp FS sheets shown in Fig. 1.
Note that the nodes in the gap in this quadrant occur
where normal and umklapp bands cross. One can show
[16] that, for a d-wave state, a node in the gap will occur
at these crossing points if the superlattice potential is
larger than the order parameter, a rather weak condition.
This is a phase-sensitive argument peculiar to a gap
function which changes sign about the (vr, vr) directions.
This argument would not apply in the I Y quadrant, and,
since similar behavior is being seen in this quadrant, a d-
wave state does not appear to be consistent with our data
at the present time.

In conclusion, we find a nontrivial dependence of the
superconducting gap in Bi2Sr2CaCu208, with line nodes
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FIG. 4. Absolute values of the superconducting gap along the
FS in Bi2212. The numbers on the points correspond to the
data labeled in Fig. 2. The x axis is in units of k (the length of
I -M is m). Some angles relative to the X, I'-M direction are
also indicated.

[2]

[4)

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15)

[16]

[17]

B.G. Levi, Phys. Today 46, No. 5, 17 (1993).
W. N. Hardy et al. , Phys. Rev. Lett. 70, 3999 (1993).
C. G. Olson et al. , Science 245, 731 (1989).
Z.-X. Shen et al. , Phys. Rev. Lett. 70, 1553 (1993).
R. J. Kelley et al. , Phys. Rev. B 50, 590 (1994).
The detailed measurements of the Fermi surface will be
presented in a future publication.
A six parameter fit was used, as in the work of R. J.
Radtke and M. R. Norman [Phys. Rev. B 50, 9554 (1994)],
although with parameters to fit our data.
R. L. Withers et al. , J. Phys. C 21, 6067 (1988). We
also see the superlattice with x-ray diffraction in our own
samples.
P. Aebi et al , Phys. Re.v. Lett. 72, 2757 (1994). Recently,
these authors [J. Osterwalder et al. (to be published)] have
also reported superlattice features.
While the Bi2212 EDC is a spectral function, the
polycrystalline nature of Pt leads to an angle integrated
EDC which measures density of states. Note, however,
that at 13 K the shapes of the leading edges of both
the Bi2212 and Pt spectra are determined by the energy
resolution.
J.R. Schrieffer, Theory of Superconductivity (W. A. Ben-
jamin, New York, 1964), p. 122.
We use a background of the form c f„d Ie(k, e), which
is a phenomenological model of secondary emission of
inelastically scattered electrons, with the same value of c
for all spectra.
Similar behavior is observed in optical and microwave
measurements of YBa2Cu30695 [D.A. Bonn et al. , Phys.
Rev. Lett. 6S, 2390 (1992)].
In particular, we cannot get a finite ~Ak~ even after setting
ek 4 0, since the leading edge of the spectrum would shift
to the high binding energy side, which is inconsistent with
the data.
The data shown in the two quadrants were taken on
different samples (from the same batch) because our
analyzer does not have the angular range to cover both
quadrants in the geometry used.
M. R. Norman, M. Randeria, H. Ding, and J. C. Cam-
puzano (to be published).
We find that a gap of the form cos k X cos k,, fits the data
quite well including the position of the nodes [16].

on both sides of the (~, 7r) directions, consistent with an
anisotropic s-wave gap [17].

This work is supported by the DOE under Contract
No. W-31-109-ENG-38 and by NSF Grant No. 8914120.
The Synchrotron Radiation Center is supported by NSF
Grant No. DMR-9212658.

2787


