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Effective Masses of Ions in Super8uid 3He-B
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We show that ion masses in superfluid 'He ought to be enormously enhanced (by a factor of 10') as
compared with the same ion masses in "He measured at low temperature. We calculate precisely the
dependence of the effective mass on pressure in 'He-B, and show that the coherent (ballistic) motion of
ions in 'He-B can be studied experimentally at T ( (0.3 —0.2)T, .

PACS numbers: 67.57.Hi, 66.20.+d

The problem of ion motion in normal He liquid has
been of long-standing interest, partly because of its con-
nection with the "orthogonality catastrophe, " but mostly
because theorists have had a hard time explaining it. The
ion motion is greatly overdamped at low temperature,
by multiple scattering of He quasiparticles, so theorists
have concentrated on calculating the experimentally mea-
surable ion mobility. Early perturbative calculations [1]
predicted a mobility p, (T) diverging as 1/T2 below a tem-
perature To = pF/M, where M is the bare ion effective
mass [M —(100—260)ms, depending on pressure, for the
negative ion; here m3 is the He atomic mass]. Experi-
ments on both positive [2—4] and negative [2,5 —8] ions
fatly contradicted this prediction; p, is roughly constant
through and below Tp, all the way down to the superfluid
transition T, .

However, this problem is a strong-coupling one. The
dimensionless ion- He coupling is g = petr, „/3~, with
a.„ the transport cross section, and g » 1. The high-T
scattering rate equals I" = Tpg » Tp, which is why the
ion motion is overdamped already for T » Tp. Moreover,
it was realized by Josephson and Lekner [9] that for T (
I the ion recoil is not free, but Brownian diffusive, down
to the unobservably low temperature T, h

= Tpg e g. This
diffusive motion means that it is meaningless to define
an effective mass for the ion above T„h. The theory
of ion mobility in normal He has nevertheless been
considerably refined since then [10,11].

One obvious way for experimentalists to see coherent
motion of an ion in He is to go to the superAuid phases,
where the gap cuts off the orthogonality catastrophe
[10]. Remarkably, this possibility has not been explored,
neither in theory nor experiment (although some mobility
theory and experiments have been done [8]—we return
to these below). In this paper I give detailed theory of
ion dynamics, which is exact in the large-g limit. A very
striking prediction emerges from this analysis that the
effective mass of ions in the superfluid phases will be very
large (up to 2 X 10 m3, or some 100 times the bare ion
mass). I calculate the effective mass M'tt(P) as a function
of pressure in the low-T limit in He-B, and suggest how
this prediction might be verified experimentally. This

dr V(r —R)p(r),

where R is the ion coordinate, HI; the Hamiltonian of
He, and p(r) the He density operator. We make use of

the path integral technique and integrate out the fermion
degrees of freedom [11],and start by considering the case
of normal He. Using Feynman's path integral over R in
imaginary time [13] the effective action in the partition
function can be written

P
dr dr' g +„(R, —R, )e' "'

nWO

where So = fdrMR~/2, co„= 2~n/P are Matsubara
frequencies, and the inIIuence functional +„(R) is related
to the overlap integral between the initial and final Fermi
liquid states with different local potentials [11];one has

+„(R) = "
Train (SfS, ')).

16~2 (3)

where Sf ——S(R) and S; = S(0) are the scattering S
matrices at the Fermi energy in the final (the particle at
the point R) and initial (R = 0) states. The connection
with the overlap integral (f I i) is established by

d co coth(co/2T)
ImF to, R . (4)

p M
»I&f I t)l = 2

The effective action (2) and (3) is correct provided we
deal with heavy particles, M » m3.

The formal expression (3) is highly nonlinear in R and
cannot be solved in general. However, in the strong-
coupling limit g » 1 we can restrict ourselves to a
quadratic expansion

S'(R) = " (pFR),gl~. I

4~ (5)

prediction (which is clearly out of the framework of the
standard models [12]) should constitute a very stringent
test of our ideas of particle dynamics in a Fermi liquid.

The Hamiltonian is that of a spherical object in a Fermi
liquid environment:

10= —MR +HF+ V,
2
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which results in a simple quadratic action

s"& = g(~„' + I l~. l) IR. I',MP
n

(6)

where R, = Q„R„e' "'. Moreover, if we calculate the
mean square value of the particle displacement using
Eq. (6),

pF((R, —R, ) ) = ln
3 I

7Tg 2'7T T
(T « I ),

we find [11,14] that the expansion (5) is justified in
the normal state down to T„h., the higher order terms
in the expansion (pFR) —C4(pFR) + . give rise to
small corrections proportional to (20/~g)C41nr which
can be neglected at T » T„h. The case of negative ions
is of most importance here because for the hard sphere
potential with pFR » 1 (R is the bubble radius) the
coefficient C4 turns out to be very small, C4 —10
10 3.

Now in the normal state, the mobility p, is given in
linear response, and in the R2 approximation, by

p/e =
Mao~ —f(co)

(7)

where f (cu) = 4vrF (cu)/R, and e is the particle charge.
While this describes diffusive motion for cu ( I, one can
also think of Eqs. (6) and (7) as describing a frequency-
dependent mass renormalization M' /M = 1 + I /lou, l.
In the diffusive regime one assumes that M"'(v ) ~ T;
then Einstein s relation p, ~ (v~) /rTwith r the scattering
time, plus the experimentally observed p, (T) = const,
leads to the conclusion that M'r ~ 1/T, since certainly
r ~ 1/T. This, however, is only very indirect evidence
for a temperature-dependent effective mass.

We therefore consider the ion motion in the superPuid
state. To do this we must consider the overlap integral
(4), and the starting point may be the expression derived
by Yamada and Yosida [15] at T = 0 for the normal state
which can be readily generalized for the case of finite
temperature superfiuid [16]. However, we need only the
lowest order term in R2 here, which allows us to treat the
difference between the initial and final state Hamiltonians

(-1)
27T2

dEdE' 1 —n
Tr[G„„(E)5VG„„(E')5V) .

(9)
Here n„ is the Fermi distribution function, and 6,„ is
the retarded on-shell Green function. Note that in the
general case Green functions are matrices not only in
the momentum space, but in the spin and electron-hole
channels as well. Equation (9) can easily be rewritten in
the form corresponding to Eq. (4). Thus we can write the

b, v„= i(p —p') R(v)„
as a weak perturbation for arbitrary V. In this case the
overlap integral takes the form

expression for the function f(co) [see Eq. (7)] as

dE dE' o(E,.E') (n~ —n E)

X 6(E —E' —o)),

o(E,.E') = — Tr(G,„(E)AVG,„(E')Av), (10)
1

fLpF 7TR

where n = pF/37r~ is the particle density of 'He.
The static limit of Eq. (10) gives the mobility in the
elastic model e/p, = npF f dE o(E, E-) ( dna—/dE) (see
Ref. [17]).

Until now we have not specified the superAuid phase
of He, and Eqs. (10) are valid for both .He-A and
He-B. To observe the ballistic motion of ions experimen-

tally we need the scattering time to be very long (r ~ 1—
10 p, s). This condition under any reasonable experimental
arrangements may be satisfied only in He-B at T «T,,

[in fact, T ~ (0.3—0.2)T,]. The R2 expansion is valid
while the recoil energy is smaller than the particle ther-
mal energy. From the above discussion and the explicit
calculation below it follows that the recoil energy with the
renormalized mass is of order (pF/M)A/1 —5/g which
means that the R2 expansion (and elastic scattering model)
is valid for T ) T, ~

= 5/g. For large g (which for the
electron bubble is between 10 and 30 depending on pres-
sure) this temperature is quite low. An important point
is that the effective mass renormalization is stopped at
temperatures right below T„and at T «T, corrections
to the effective mass due to normal excitations are ex-
ponentially small. In the region between T, and T, i the
particle starts moving ballistically with the exponentially
increasing mean free path. Below T, ] the ion recoil be-
comes important in calculating the diffusion rate, and the
R approximation breaks down. However, at these tem-
peratures the mean free path is already many orders of
magnitude larger than the particle wavelength, and the ef-
fective mass ceases to depend on T at all. Thus the cal-
culation of I" within the R expansion is fully justified,
and in the rest of this Letter I concentrate on calculating
M'" from Eq. (10) in He-B at T = 0.

It follows from the form of the effective action (2) that
the mass renormalization is defined by the ~2 term in the
small frequency expansion of the functional integral

2 dc' Iillf (co)
'TT Q

(in He-B the effective mass is isotropic). For T = 0 it
can be further simplified to

6M = dx dx', (12)
2npFR2, o-(x, —x')

0 x+x'''
where o.(x, x') = o(x, x')/~R. de2pends only on (pFR ),
and the dimensionless frequencies x = E/A. In the
simplest case of weak scattering potential (the strong-
coupling limit g » 1 still may be realized through a
large number of weak scattering channels contributing to
o.) one can substitute the Green function in Eq. (10) by
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its unperturbed value, which is equivalent to performing
a u-v Bogoliubov transformation on the normal state
amplitude. After straightforward algebra we find

6M„

where cr2 = f dA (1 —cos20)do-/dA, . This mass renor-
malization could be as large as 4 x 10 m3 at zero pres-
sure. However, we demonstrate below that the exact
calculation for the hard sphere potential gives a value of
BM substantially different from Eq. (13).

As pointed out in Ref. [17] the scattering matrix has a
resonant behavior at energies near the gap edge which has
to be treated exactly. First, we express conventionally
the Green function in terms of the scattering T matrix
as G(co) = V 'T(co)V ' —V ' and present the trace in
Eq. (10) in the form

Tr(T,„(x)AV 'T,„(x')AV '), (14)
where (AV ')» —= i(p —p')R(V ')» . The analytic so-
lution for the T matrix was found in Ref. [17]. Since the
energy spectrum of He-B is spherically symmetric and
does not depend on spin, and o"p (where o. is the fermion
spin operator) is invariant under simultaneous rotations of
the spin and momentum, it is clear that the T matrix is
diagonal in the total angular momentum j and its projec-
tion m. Introducing the angular momentum eigenstates

~j, m, l = j ~ 1/2) =—
~
jm~) one can represent the T ma-

trix as [17]

1TN(0)T = 'r=;(15)t3(K) o-2ti (—K)o-2

t] — s s t] ,
Jm S=

t3 =O2 —S St3

where N(0) is the density of states in the normal phase,
and t] and t3 are known functions of frequency and
phase shifts at the Fermi surface, E, = tanBI=j

t', = K,,(1 —i pK, ,)/d, , ;

t3 = (p/x)K, ,K, , /d, , ; (16)

dj, = (1 + i pK~, ) (1 —i pK, ,) —(p/x) K,,K,

Here p(x) = x/(x —I)'t . Obviously, we have the same
matrix structure for the on-shell retarded T matrix as that
in Eq. (15) with the scattering amplitudes being replaced
by the on-shell ones t r

= —i8(~x) —1) Im(t', );.,"= —e(Ix) —1) Re(t,"). (17)
It is easy to show that the nonzero contribution to the trace
comes from terms having the scattering potential only in
combinations 1/Vi —I/Vi = 7rN(0) (I/Ki —I/Ki ) So, .
we may conveniently replace the scattering potential in
Eq. (14) with the K matrix. The final expression for
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6Mb —= (pFR ) m~ = 37rgm3. (20)

This mass is likely to be larger than the bare ion mass M,
but still is much smaller than the renormalization defined
by virtual transition in Eq. (12).

The procedure of evaluating M' is straightforward
now, because the trace determining the function o(E,E').
can be expressed entirely in terms of phase shifts at the
Fermi surface which for the hard sphere potential are
defined as tanBi = ji(pFR )/ni(pFR ), where ji and ni
are the spherical Bessel and Neumann functions of order l.
For any given pressure the set of parameters pF(P), A(P),
and R (P) allows us to get the effective mass M"t =
M + 6Mb + BM by numerical evaluation of Eqs. (12)
and (18). In our calculations we used the normal state
parameters taken from Wheatley's tabulation [18]. The
ion radius was tabulated in Ref. [17]. Unfortunately, we
found no tabulation for A(T ~ 0, P) in He-B, and had to
rely on a weak-coupling relation A(P) = n X 1 76T,(P).
with the pressure-independent coefficient n = 1.12 [8].
We think that b, (P) is the most uncertain parameter in the
present calculation. The bare ion mass is also unknown,
but it is unlikely to contribute more than 10% to the
effective mass, and we simply neglected this contribution.

Figure 1 shows the effective mass of the negative ion
as a function of pressure. It was found to be as large as
-2 X 104m' at zero pressure dropping down to (3—4) X
103m3 for P ) 10 bars. The perturbative result, Eq. (13),
is shown by the dashed line demonstrating the difference
between the exact scattering amplitudes in He-B and
those obtained by applying the u-v transformation on the
normal state amplitudes.

The prediction of a very large effective mass should
clearly be tested experimentally. There is already cir-
cumstantial evidence for a large mass in the mobility ex-
periments of Nummila, Simola, and Korhonen [8], who

o.(x, x') reads

o.(x, x') =,Tr(2,„(x)AK '2,„(x')AK '). (18)
(—1)

npF mR2

There is one extra contribution to the effective mass due
to bound states in the gap at E,, = ~5 cos(6, + —6, )
[17]. It is proportional to the number of occupied bound
states multiplied by the He quasiparticle mass

jmax

8Mb = m, g (2j + 1).
J

The energies of the bound states approach the gap edge
as 5 —E, —A(d6, /dj)2/2. It is physically clear that
states very close to the gap edge will disappear with
the ion recoil in the scattering processes being taken into
account. Thus the maximum orbital number contributing
to Eq. (19) is defined by 6 —E, —b, /g. For the hard
sphere potential with pFR » 1 the phase shifts drop
abruptly for j ) pFR, which allows us to estimate the
contribution of the bound states as
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FIG. 1. Effective mass of the negative ion in He-B. The
solid line is the exact calculation for the hard-sphere potential
which is compared to the perturbative result (dashed line) with
the same transport cross section in the normal state.

found that the elastic scattering theory seemed to explain
their data down to the lowest temperature obtained in
He-8; this would be hard to understand using a bare

mass assumption, since it would give a recoil energy»T
already at T = 0.4T, . However, the recoil energy calcu-
lated using the renormalized mass is much smaller (see
above).

However, what we really require is a direct experi-
mental test. One could search for resonant transitions
between the ion energy levels near the liquid-vapor
interface [20]. The distance between the ion and the
surface is large as compared to the coherence length in
3He-B up to the electric field strength E —100 V/cm,
with a typical range of resonance frequencies around
cop 10—40 MHz. From the mobility experiment [8] we
estimate that M07 )) 1 below 0.3T„and the resonance
is sharp enough to be observed. In the time-of-flight
experiment the ion mass in the bulk can be measured for
arbitrary pressure. In this technique the electric field is
reversed during a time interval At —1 —10 p, s, and the
ion is supposed not to accelerate above the Landau critical
velocity eEb, t/M'tf ( b, /pF. Fortunately, the scattering
time is as long as 1 p, s already at 0.3T„and the enormous
ion mass effectively compensates the smallness of the
critical velocity in He-B.
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