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Results are presented on the linear stability of the collisionless m = 1 mode in a dense Z pinch. It is
shown that a reduction in growth rate by a factor of about 10 (when compared to the zero Larmor radius
result) is possible by initializing the Z pinch with a sufficiently low line density. With the completion
of this work we conclude that linear, large Larmor radius effects cannot stabilize the high temperature,
dense Z pinch. Such pinches will always exhibit linear m = 0 or m = 1 instabilities with growth times

comparable to the radial Alfvén transit time.

PACS numbers: 52.35.Py, 52.55.Ez

Recent interest in Z pinches has largely been the result
of developments in pulsed power technology combined
with the use of cryogenic fibers [1-3]. This has resulted
in Z pinch experiments which should operate in regimes
of parameter space which are far removed from the
region in which ideal magnetohydrodynamics (MHD) is
applicable. More specifically it can be shown that simply
by varying the initial radius of the cryogenic fiber, and
consequently the line density, the Z pinch can be made
to operate in a variety of regimes [4]. It is well known
that Z pinches for which ideal MHD is an appropriate
model are exceptionally susceptible to instabilities with
growth times comparable to the radial Alfvén transit time
(see Ref. [5] for a detailed discussion of ideal MHD
and its application to Z pinch equilibria). The particular
effect investigated here is whether large ion Larmor
radius (LLR) effects can stabilize the dense Z pinch.
Improvements in Z pinch stability are needed if it is to
be considered as a fusion device [1,2] or if 1D radiative
collapse [6,7] is to be achieved.

Defining € as the ratio of the average ion Larmor
radius to the pinch radius, it can be shown [8] that for
hydrogen € = 2.0/rs, where ry is the initial fiber radius
in microns. By initializing the Z pinch with a sufficiently
small r, it is therefore possible to produce a pinch in
which neither the collisional localization required for ideal
MHD [5] nor the small Larmor radius localization required
for alternative fluid treatments (for example, [9,10]) is
valid. The lack of collisional localization follows from the
fact that for fixed total current the ion-ion collision time
divided by the characteristic MHD time varies inversely
with the line density [4]. It had been hoped that in
the collisionless, LLLR regime the Z pinch would show
the same improvement in stability as had been found in
other systems (see references in Ref. [8] for details). The
stability of the Z pinch to m = 0 modes in the collisionless,
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LLR Z pinch has already been investigated [8]. In this
Letter results are presented for the m = 1 mode.

The physics of the m = 1 mode in the Z pinch is dif-
ferent from that of the m = 0 mode. For m = 0 modes
it is essential that plasma compressibility is properly in-
cluded, and for internal modes it is possible to have an
equilibrium which is free of m = 0 instabilities even in
the ideal MHD limit [5]. The model which will be used
here is the Vlasov fluid model [11]. This model has been
used to study the m = 0 mode where it was shown that
the class of o stable [5] profiles is larger than in ideal
MHD. However, all of these stable profiles are only sta-
ble to m = 0 internal modes, i.e., ones in which the outer
pinch boundary is fixed, and they all have a finite pres-
sure at this boundary. Such profiles can be stable to free
boundary modes, i.e., allowing a deformable boundary, if
the plasma is isolated from the vacuum by a neutral gas in
such a way that the plasma pressure at the boundary is bal-
anced by the gas pressure, i.e., there are no skin currents.
Since Z pinch plasmas are expected to have an anomalous
resistivity [7] in the outer region (due to lower-hybrid-drift
turbulence), it is possible that this could lead to profiles
which are stable to free boundary m = 0 modes. In this
case the outer turbulent region may act as a substitute for
the neutral gas described above. While this is, of course,
speculative, since neither ideal MHD nor the Vlasov fluid
model could consistently model both regions, it is at least
conceivable that even when surrounded by a vacuum the Z
pinch could possess a set of m = 0 stable equilibria.

For m = 1 the ideal MHD and Vlasov fluid stability
thresholds are identical [11] so that all profiles are
unstable to m = 1 perturbations, both internal and free
boundary. Thus unless LLR effects are capable of
stabilizing these modes, at least in the sense of o stability,
we can make general statements about the stability of the
dense Z pinch without having to address the possible role
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of the turbulent region in m = 0 stability. This point will
be clarified later in this Letter.

Previous work on linear Vlasov fluid theory has usually
been restricted to internal modes (see references in [8]).
It is worth describing in detail how the free boundary
modes were included in this work as this is important for
a correct interpretation of the results to be presented later.
As in previous work [8] two independent techniques have
been used. One is an initial value code (FIGARO) which
has been used for internal modes and has been found
to be in agreement with the second method to within
a few percent for all profiles and € tried. This second
method, a variational dispersion functional approach, has
been extended to include free boundary modes (as well
as internal modes) by using the appropriate plasma-
vacuum boundary condition. To ensure that the full
Vlasov fluid model satisfies the boundary condition it
is necessary to guarantee that the expansion functions,
used in forming the dispersion functional matrix, all
satisfy this condition separately. In this way any linear
combination of expansion functions must also satisfy
the correct boundary condition. Finally the surface and
vacuum contributions are added to the dispersion matrix.
This is straightforward as both the surface and vacuum
contributions depended only on the radial displacement of
the boundary.

The linear, kinetic boundary condition can be derived
in the usual way by integrating the exact equations across
the plasma-vacuum interface. This differs from the usual
fluid approach in that the total perturbed pressure P*
inside the boundary contains a kinetic contribution from
[ miv2fidv, where m; is the ion mass, v, is the radial
component of the velocity, and f; is the perturbed ion
distribution function. Taking f, from Ref. [11] after some
simple transformations it can be shown that
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In this equation By is the equilibrium magnetic field,
& is the linear fluid displacement from equilibrium, w is
the complex eigenvalue, and the [ d7 integral is along
the unperturbed ion orbits. The dependence of & on
(r,z) through exp{i(mf# + kz — wt)} has been omitted
for brevity. This expression for P* has the same role
as in MHD theory and is only needed at the plasma-
vacuum boundary. In the limit of the pressure at the
boundary tending to zero, i.e., no skin current, the term
involving fo vanishes and the expression for P* is
identical to the ideal MHD expression. For this case the
ideal MHD free boundary eigenfunctions can be used as
expansion functions thereby guaranteeing that the Vlasov
fluid boundary condition is also satisfied.

For comparison with the m = 0 case [8] results are
presented for both the parabolic and Bennett profiles.
As before the Bennett profile results are calculated for
internal modes with 6 = 3, where 8 is the ratio of the
pinch radius to the radius at which the magnetic field has
its maximum value. Free boundary modes are simulated
by taking 6 = 10 so that the profile extends into a
sufficiently low density region that the vacuum can be
ignored. This is less of an approximation than for m = 0
as the m = 1 free boundary modes of the Bennett profile
are actually localized near the axis, with only a relatively
small radial displacement of the boundary. Indeed for
6 = 3 the free boundary and internal modes have the
same growth rates and eigenfunctions, to within about
1%, for m = 1 in the Bennett profile. For the parabolic
pressure profile a small finite pressure is still required
at the boundary to avoid a singular radial electric field
in the equilibrium. The small skin current associated
with this pressure should strictly affect the boundary
condition as described above. However, varying this
residual boundary pressure (P,) between 107 °P, and
1073Py, where Py is the equilibrium pressure on the axis,
did not affect the results, and we conclude that providing
the pressure at the boundary is sufficiently small it can be
assumed to be zero. A third important equilibrium is also
included here for the first time. This is the Kadomtsev
m = 0 marginally stable profile [5]. The results presented
here are for such a profile with P, = 0.01P,. Like the
Bennett profile this equilibrium cannot be surrounded
by a vacuum unless P, is balanced by a skin current
or neutral gas. This would violate the exact Vlasov
fluid boundary condition when using MHD expansion
functions as outlined above. Unstable m = 1 modes for
the Kadomtsev profile are, however, localized near the
axis. This is true in ideal MHD [5] and we have found
that it is also true in the Vlasov fluid theory. Thus, like the
Bennett profile, treatment of internal modes also implicitly
covers the free boundary analysis.

Figure 1 presents the results for each of these equilibria
with the growth rate of the instability plotted against € for
ka = 10, where k is the wave number of the instability.
All growth rates are normalized to the ideal MHD value
(with T' = 5/3, where I' is the ratio of specific heats)
for that equilibrium. The parabolic profile results are
for free boundary modes with P, = 107P, so that the
exact boundary condition above is satisfied. The Bennett
profile results are for internal modes with 6 = 3 so
that comparison with earlier m = 0 results is possible.
When 6 is varied, § = 20 is the largest which has been
tested, there is no change in the nature of this curve,
and we concluded that the free boundary and internal
mode Bennett profile stability results are the same. The
Kadomtsev results are for internal modes, but as discussed
above the eigenfunction is localized near the axis and the
free boundary growth rates and eigenfunctions are the
same as presented here. Thus a wide range of internal
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FIG. 1. Growth rate (normalized to the MHD value) against
€ with ka = 10 for the parabolic profile free boundary modes,
Bennett equilibrium (6 = 3), and Kadomtsev m = 0 marginally
stable profile.

and free boundary modes have been studied for different
equilibria. In all cases results similar to those presented
in Fig. 1 were found. Results for € > 0.4 have not
been produced since this corresponds to ry <5 um and
cryogenic hydrogen fibers this thin are unobtainable.

Unlike the m = O results [8] there is little difference
between the equilibria and the destabilizing effect of in-
creasing e for the Bennett profile is absent. The parabolic
profile shows the greatest reduction in growth rate, by a
factor of about 10 for ka = 10, with the minimum growth
rate occurring at € = 0.2. This is similar to the m = O re-
sults and we concluded that as far as linear stability theory
is concerned there is an optimal line density N for dense
Z pinches of N = 8 X 10'8A, where the relation between
N and e is taken from Ref. [8] with € = 0.2 and A is the
atomic mass number. For m = 0 it is known that the zero
Larmor radius limit must reproduce the Chew, Goldberger,
and Low growth rate. For m = 1 the stability threshold is
the same as ideal MHD but the growth rate need not be
the ideal MHD value. Since, in principle, the zero Larmor
radius Vlasov fluid model can be written as a closed set of
fluid equations, the only difference between the resulting
equations and ideal MHD being the nonscalar pressure and
consequently more complex equation of state, one would
expect the zero Larmor radius growth rate to be close to the
ideal MHD value. This is because the m = 1 ideal MHD
growth rates are insensitive to the choice of I'.

Figure 2 shows the effect of increasing e for the
parabolic profile over a range of values of ka. Growth
rates in this figure are normalized to the ion thermal
transit time. The best overall reduction in growth rate
occurs for € = 0.2. Figure 2 also shows that the fastest
growing mode will have a wave number such that ka = 1
for the optimal line density. This should be contrasted
with the m = 0 case where the fastest growing mode
of the parabolic profile was at shorter wavelengths, i.e.
ka = 6. For long wavelength modes, i.e., ka < 1, LLR
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FIG. 2. Growth rate (normalized to the ion thermal transit
time) against ka for the free boundary modes of the parabolic
profile with € = 0.01, € = 0.2, and € = 0.4.

effects have no effect on the m = 1 growth rates for this
equilibrium. The Bennett and Kadomtsev profile results
are similar to those shown here in Fig. 2.

For the Z pinch to achieve fusion, or 1D radiative
collapse, it needs to persist for approximately 10° radial
thermal transit times. The reductions in growth rate found
here for m = 1, and previously for m = 0, are therefore of
little practical consequence for fusion. The fact that the
Kadomtsev profile is not stabilized by LLR effects does,
however, allow us to reach a general conclusion about
Z pinches. While the LLR calculations were restricted
to m = 0 there was always the possibility that the pinch
may evolve into a Kadomtsev stable profile with an
outer resistive region acting as a neutral gas in the
sense outlined above. We can now conclude that even
if this were true the pinch would still be unstable to the
m = 1 mode. The viability of any magnetic confinement
configuration relies on the absence of large amplitude
instabilities. The present work has shown that in the
case of the high temperature Z pinch linear instabilities
are never absent. Irrespective of the equilibrium profile
or the size of the average Larmor radius the Z pinch
will certainly be linearly unstable to the m = 1 mode and
probably to the m = 0 mode also. We can now conclude
that the only way in which a high temperature, i.e.,
collisionless, Z pinch could persist for longer than a few
radial Alfvén transit times is if physical processes omitted
from the present model dominate the pinch evolution.
The possible nonlinear saturation of unstable modes is
the most significant of these omissions, nonlinear effects
obviously being beyond the scope of the present analysis.
The nonlinear saturation of ideal MHD, m = 1 modes
has been demonstrated analytically for modes close to
marginal stability [12]. However, this result cannot
be extended to the general stability (i.e., far from the
marginal points) of the collisionless, LLR Z pinch and
is only indicative of the kind of nonlinear effect which
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may pertain to this regime. In the fully collisionless
regime, i.e., with kinetic LLR ions and electrons, a full
3D electromagnetic simulation of the Z pinch has been
implemented in the SPLASH code [13]. The assumption of
an ion to electron mass ratio of 16 prevented quantitative
measurements from this code although the onset of
the m = 1 mode was clearly observed. The nonlinear
evolution and possible mode saturation of a LLR Z pinch
are thus still unknown.
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