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Ruelle's principle for turbulence leading to what is usually called the Sinai-Ruelle-Bowen (SRB)
distribution is applied to the statistical mechanics of many particle systems in nonequilibrium stationary
states. A specific prediction, obtained without the need to construct explicitly the SRB itself, is shown
to be in agreement with a recent computer experiment on a strongly sheared fluid. This presents the
first test of the principle on a many particle system far from equilibrium. A possible application to quid
mechanics is also discussed.
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In his treatment of strange attractors Ruelle introduced,
as a principle (R): the time averages of observables, on
motions with initial data randomly sampled with the Liou-
ville distribution p, o, are described by a stationary proba-
bility distribution p, obtained by attributing a .suitable
probability density to the surface elements of the unsta
ble manifolds of the points in phase space [I]. In hyper-
bolic systems this leads, as a theorem, to identifying p, with
the Sinai-Ruelle-Bowen (SRB) distribution on the attractor
[1]. (R) was based on important previous results [2—6].

The unstable manifolds are quite difficult to obtain: It
has been questioned whether (R) has any predictive value
when it cannot be a priori proved [7]. It is implicit,
we think, in Ruelle's ideas that the principle should be
applied by assuming suitable properties making (R) valid
and then retain the consequences concerning the large
scale (in time and size) behavior. A similar situation
arises in statistical mechanics where the equilibrium
statistics is accepted on the basis of the ergodic principle
(usually called hypothesis) and one derives the "heat
theorem" (second law) and the thermodynamic properties.
Analogous consequences, which would turn (R) into a
tool for predictions, proved difficult to find in the case
of turbulence. But recently [8] have shown that (R)
does imply macroscopic consequences, e.g. , the Einstein
relation for the diffusion and conductivity coefficients in
systems similar to ours in the linear regime where (R) can
even be proven for a single particle system.

In this Letter we present consequences of a different
nature that can be derived from (R) and subjected to
experimental tests, particularly for non-small forcing,
without having to compute rather difficult dynamical
quantities like Lyapunov exponents as in [8] and without
the need to compute, even approximately, p, [9].

Although our considerations appear to be quite general,
this Letter is written with the theoretical interpretation of
a numerical experiment in mind: the entropy production
fluctuations in a shearing many particle fIuid in a nonequi-
librium stationary state far from equilibrium [10].

We first define the model of the shearing fluid we treat.
The two-dimensional shearing Quid is in a nonequilibrium

stationary state, driven by an external shear rate y =
Bu„/6y ("forcing"), where u is the horizontal local
velocity u = iyy (and I is the x axis unit vector, y is the y
ordinate from the baricenter) and coupled to a thermostat.
The equations of motion are the SLLOD equations [11,12]

q, = p, /m + iyyj, pj = Fj I'Ypyj ~pj ~ (1)

where j = 1, . . . , W labels the W quid particles with mass
m; p~/m is the peculiar velocity of particle j, i.e. , its
velocity with respect to the local IIuid velocity u(q, ) =
iyy, ; p, is the peculiar momentum relative to the bari-
center; and F, is the interparticle force on particle j, due
to a purely repulsive pair potential p(r), where r is the
interparticle distance (e.g. , an inverse power potential).
If x = (p~ pzqI . qz) denotes the phase of the sys-
tem, the variable a is defined by requiring the internal
energy Ho(x) = g, pj/2m + 4(q&. . . qz) to be a con-
stant of motion, where C&(q~. . . qz) = g;», p(~q; —q, ~)

and a can be easily computed [10]. The model is stud-
ied in [10,12,13] with periodic (Lees-Edwards) boundary
conditions, which we replace here by simpler ones: hori-
zontally periodic boundary conditions and vertically elas-
tic wall rellections [14].

For a dynamical description of this system one can
suppose that the total (peculiar) momentum P~~ and the
center of mass position X~~ in the shear direction vanish.
If the observations are made in discrete time by observing
subsequent particle collisions, then, with the constant
energy, the system can be described in a phase space C
of 4N —4 dimensions. The Liouville distribution can
be projected on C giving a distribution p, o (to which
we refer with the same name), but p,„ is stationary only
for y = 0. The evolution will be a map S related to
the solution operator t S,x of (1) and to the time
t(x) elapsing between a timing event x E C and the
next: Sx = S,~„~x. The phase space volume variation
rate, which is also the entropy production rate for this
system [8,15], is the divergence of the right-hand side
(rhs) of Eq. (1) and equals (2N —2)o., with cr close
to o. , in fact, one finds, after a brief computation, o- =
n + y g~ p,~pyj/(N —1)gl p~

= n + yO(N '). The
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average entropy production rate is (2N —2) (cr), where
the brackets denote a (forward) time average over an
infinite time.

The many particle statistical mechanical system in
Eq. (1) exhibits the following features: (A) Dissipation:
(a.) ) 0 [16]; (B) time reversal invariance: the map
i (x, y, p„p~) ~ (x, —y, —p„p~) is such that if t ~ x(t)
is a solution of (1), so is i(x( —t)) [10,11].

We note that (A) implies the existence of an invari-
ant set A, which we will call the attractor, of 0 Liouville
probability (if y 4 0) but probability 1 with respect to the
asymptotic statistics p, of the motions with random initial
data (with the Liouville distribution), so that p, (A) = 1.
Property (B) implies a direct relation between the sta-
tistical properties of the forward (t ~ ~) and backward
(t —~) motions, although described in general by dif-
ferent statistics, e.g. , they have the same set of Lyapunov
exponents.

To apply Ruelle' s principle in the spirit discussed
above, we assume that, in view of the particle collisions,
the behavior on A is as if A were hyperbolic. There
may well be corrections to this: proceeding by ignoring
such possibilities is our interpretation of (R). In practice
this means that we suppose that the corrections become
negligible as N ~ ~ [17]. The strongest form of the
hyperbolicity assumption is as follows. (C) (a) at every
point x of C one can define stable and unstable manifolds
W„', W„" dense in C, transversal, and covariant (i.e., they
form an angle bounded away from 0, ~ when they cross
and SW» = Ws„, P = u, s). (b) The tangent planes toP P

W» vary continuously with x. (c) Line elements at x are
uniformly reduced in length by a factor at least Ce
under the action of S" if tangent to W, , or under the action
of S " if tangent to W„", for n ) 0 with C, A ) 0. (d) If
the sign of n is changed, corresponding properties hold
with expansions replacing contractions.

Such a system has been considered in [2] (Anosov
system) and it can be shown that it admits a distribu-
tion p, describing the statistics of random data chosen
initially with the Liouville distribution and that p, veri-
fies (R), being uniquely determined by the property stated
in (R) [18].

We note that (B) and (C) imply that there are 2N —2
positive Lyapunov exponents for S (S ') and that W„"

(W„') have the symmetry property W„' = i W,"„Fur-.
thermore, A (and iA) are dense in C, although we
anticipate, from the pairing property in [12] and the
expected smoothness of the Lyapunov spectrum [21], that
the Kaplan-Yorke fractal dimension of A, Ref. [6], is
y20(N) smaller than the dimension of C (i.e. , "dimen-
sional reduction" occurs).

Most results derived from (C) really come from the
fact that (C) implies the existence of Markov partitions
(MP), which permit us to give a rather simple description
of the distribution p, [the SRB, see Eq. (3) below], upon
which all our deductions are based. The MP are tilings S

of C with suitable small sets E called "parallelograms, "
naturally related to the stable and unstable manifolds
(with their "axes" parallel to the stable and to the
unstable manifolds); see [3,4] for a complete description.
A property that always holds is the time invariance of
the MP: If S is a MP also the partition SS obtained
by evolving in time the elements of S is such. A
key property of MP is that the partition obtained by
considering the intersections of all the tiles of two MP
is still a MP. Hence, given a MP S, one can construct
other much finer ones: A typical method is to consider
the partitions S~ S and to define the partition ST obtained
by intersecting all the tiles of all the partitions SqX' with
—T ( q ( T. The parallelograms of the finer partitions
may become as small as desired by taking T large (by
the hyperbolicity). The description of the statistics p,
of the Liouville distribution, in terms of the family of finer
partitions XT, associated with X, is done as follows: (1)
Given two times ~ and T, let E, be the parallelograms of
'ET labeled by j, and let x, be a point in E, (arbitrarily
fixed); define a probability distribution p, , r by attributing
to each E, E ST a weight:

A. ,(x, ) =
I =—~/2

A
—i (Sk

where A, (x) is the absolute value of the determinant of
the Jacobian matrix of S as a map of W„" to Ws, so
that the weight A„(x~) is the inverse of the expansion
coefficient of the map S' evaluated at S '/ x, , i.e., at
the initial point of a motion spending half of the time
"before" reaching x, and half "after." For later use
we define corresponding quantities associated with the
stable manifold, denoted by A, (x) and A, ,(x). (2) After
normalization the above weights define a distribution p,
by requiring that the average of any (smooth) function G
with respect to the distribution p, T will be

P, A, ,(x,)G(xi)
p, , r(dx)G(x) = ' ', . (3)

g, A„,(x, )

(3) Consider the limit as ~, T ~ ~, with T ~ ~ fast
enough compared to ~, so that in each parallelogram the
weights in Eq. (3) have a small relative variation.

It follows then from Sinai's work [2] and from [3,4]
that the limit exists and is the statistics p, of the Liouville
distribution [22] and the p, does indeed verify (R). The E,
may be interpreted as the dynamicalstates of [10],. The
p, , T in Eq. (3) plays the role of the finite volume Gibbs
distributions in statistical mechanics.

We now turn to the numerical experiment in [10]:
(i) The main results concern properties of the entropy
production over a generic time interval 7 to, during which
the trajectory moves between S / x and S / x, if to is the
average time interval between two successive collisions
[23] (x is the middle point of this trajectory segment).
The entropy production is defined here, following
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[15], by tp g, t2 (2N —2)o.(Six). It will be con-
venient to rewrite the latter expression by setting
(2N —2)rtp(o) (x) = (2N —2)rtp(o. )a, (x), where (o.),
denotes the time average of the entropy production rate

over the above time interval 7.to. This defines a
Iluctuation variable a, (x) with (forward) average equal to
1 [because the infinite time average of (o.), is the above
defined (o-); see (A)]. The exponential +,(x) of the
entropy production is the reciprocal of the phase space
contraction itself. (ii) For such an observable, which is
strongly ~ dependent, it may be doubtful to use p, T to
estimate the probabilities relative to p, , even if 7. , T are
very large [24]. However, it is possible to prove, if (C)
holds ([22]), that not only the average of +, but even the
probabilities of the various values ofj,' can be computed
by using p, r of Eq. (3). The error on the probability
attributed to each individual E, would then consist of a
factor bounded, above and below, by a ~-independent
positive constant.

In the computer experiment [10] one measures the en-

tropy production In+, (x), as seen on a stretch of time
7 short compared to the experiment duration T, repeat-
edly T/r times (see also [13]). This amounts to study-
ing the p, distribution of the fluctuation a, (x) in (i). The
main experimental result corresponds in the present con-
text to the computation of the logarithm of the ratio of
the probability that a, (x) = p to that of a, (x) = —p.
The result, Fig. 2 of [10], is that this quantity as a func-
tion of p is a precise straight line with slope 2Nrtp(o).
for 7. large.

We now use the very formal expression of p, defined
via Eq. (3) to study some statistical properties of +,(x)
and compare the result with [10]. We argue that the
ratio of the probability of a, (x) E [p, p + dp] to that
of a, (x) ~ [—p, —p + dp] is, using the notations and
the approximation to p, in Eq. (3),

g, , („) A„,(x,)

g, .(„)= „A,,(x))
(4)

We evaluate Eq. (4) by establishing a one to one corre-
spondence between addends in the. numerator and in the
denominator, aiming at showing that corresponding (i.e. ,

with the same j) addends have a constant ratio which
will, therefore, be the value of the ratio in Eq. (4). This
is made possible by the time reversal symmetry which
is the extra information we have with respect to [2—4).
In fact, the time reversal symmetry (B) can be shown
to imply that, with S, iS is also a MP. Since the in-
tersections of MP are still MP, we can assume that S,
hence also ST, will be time reversal symmetric, i.e., that
for each j there is a j' such that i Ej = E, . By using
the identities S '(S'x) = x and S '(iS x) = ix (time
reversal) and iW„' = W „, one can deduce, with A, ,(x)
defined after Eq. (2): a, (x) = —a, (ix) and A„,(ix) =
A, ,(x) '. The ratio Eq. (4) can therefore be rewritten

as

Ze .,(., )=, A. .(x, )

QEJ,~, (x, )= p A, ,(x, )

XE,a, (x )=p A (xJ)

ZE. ,&,(x )=& As, 7 (xj)

Then the ratios between corresponding terms in Eq. (5)
are equal to +,(x, ) —= A„,(x, )A, , (x, ). This is almost

+,(xt) —= e"("~)(2~ 2)( '"', which is j independent [be-
cause a, (x, ) = p]. In fact, the latter is the reciprocal of
the determinant of the Jacobian matrix of 5, i.e., the re-
ciprocal of the total phase space volume variation, while
F,(x, ) is only the reciprocal of the product of the varia-
tions of two surface elements tangent to the stable and to
the unstable manifold in x, . Hence F, (x) and + (x) dif-
fer by a factor related to the angles between the mani-
folds at S 't2x and at S't2x. But assumption (C) im-

plies transversality of their intersections, so that the ratio
between +,(x) and F,(x) is bounded away from 0 and
+~ by (x, r)-independent constants. Therefore the ratio
Fq (4) is eq.ual to e"( '"', as well as to that found in
[10],up to a factor bounded above and below by a (r, p)-
independent constant, i.e., to leading order as ~ ~ ~.

We note that this result can be considered as a large
deviation result (both in N and tpr): Its peculiarity is
the linearity in p. On general grounds one might ex-
pect that the deviations of [1/(2N —2)tpr]1n+, (x), or of
p, from its average value 1 have a probability density
vr(p) expressible in terms of some "free energy" function

g(p) as 7r(p) = e &(")'". Here g(p) describes the multi-
fractal nature of the observable +, : A "nonmultifractal"
distribution would correspond to a delta function distri-
bution e &(t') "—:B(p —1). Noting that e(p) —= g(p)—
g( —p) = [I/rtp] ln7r(p)/7r( p) is an —odd function of
p, we expect e(p) = c(o.) (p + s3p + sqp + . . ), with
c ~ 0 and s, 4 0, since there is no reason, a priori, to
expect a "simple" (i.e. , with linear odd part) multifractal
[25]. Thus p linearity (i e , si —= 0) .is. a key test of the
theory and a quite unexpected result from the latter view-
point. Recall, however, that, as noted in remark (ii) after
Eq. (3), the exponent (2N —2)tpr(o)p is correct u. p to
terms of O(1) in r (i.e., deviations at small p must be ex-
pected). This shows that Ruelle's principle can indeed be
tested on many particle systems in statistical mechanics
and in fact is in agreement with the computer results ob-
tained in [10]. The same theory would also apply to other
models like the ones in [8] or in the time reversible case
in [27] for which, to date, no corresponding experimental
results exist [28,29].

A similar test might even apply to fluid dynamics, for
which (R) was originally devised. In fact, the above
linear multifractality [of the odd part of g(p)] might
be observable in the high turbulence regime in fluid
mechanics at least in numerical experiments for models
in which no friction acts in the inertial range. The fluid is
then described in the inertial range by the reversible Euler
equations, while the dissipation below the Kolmogorov
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scale can be modeled by a Gaussian thermostat, thus
making the equations describing the system analogous to
Eq. (I) (see also [29,30]).
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