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Nonlinear Dynamics in Granular Columns
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Atomistic simulations of the vertical propagation of perturbations in deep gravitationally compacted
granular columns characterized by the intergrain potential V(6) ~ 6", with n ~ 2 and 6 the grain
overlap, are shown to recover the results of elasticity theory for weak perturbations. For strong
perturbations, the sound velocity est„,„~ c „k as z ~ with the deviations from c „k best expressed
via a certain recursion relation in g. We predict that voids in real granular columns lead to c ~ 1

—e,
when the void fraction e is small, and show that the velocity power spectrum of a grain resembles that
of a harmonic oscillator chain as z

PACS numbers: 46.10.+z, 03.20.+i, 62.30.+d

Nonlinear elasticity and sound propagation in dry granu-
lar columns at small strains [1—5] has received significant
attention in recent years. The characteristic feature of ver-
tical sound propagation in granular columns as predicted
by elasticity theory, referred to in the literature as Hertzian
contact theory [3,4,6], is that the sound velocity c scales
as z''/, z being the depth. This power law behavior is ob-
tained from the assumption that the grains interact via the
well accepted potential for contact between noncohesive
spheres V(6) ~ Bs12 for r ( r„with r, the cutoff radius,
0 otherwise, where 6 denotes the normal displacement of
one grain against another [7].

This prediction is consistent with experimental results
for c at large depths or pressures. Discrepancies between
Hertzian theory and experiments, however, persist at shal-
low depths [5,6], and one must invoke altered contact
mechanisms to explain shallower depth sound propagation
[5]. In general, however, the elasticity theoretic treatment
of sound propagation, while simple and appealing, is pos-
sibly inadequate for describing the propagation in real
granular columns at shallow depths, in the presence of
voids, and when perturbations of large magnitude are
important.

In this Letter, we use molecular dynamics simulations
to first recover and generalize the elasticity theory based
predictions mentioned above for very deep 1D granular
columns of -104 grains. We then extend our study
and consider the problems of real granular systems by
addressing the deviations from the scaling law for large
amplitude perturbations at shallow depths followed by an
extension of the study to 2D columns with voids and the
role of voids in modifying the scaling law for c. We
close with calculations of the velocity power spectra of the
grains at large depths which reveal that the grain dynamics
at various depths can be related to the simpler problem of
the dynamics of particles in a harmonic oscillator chain
subjected to a weak linear field. Thus, the present Letter
discusses a simple way to study the propagation of strong

perturbations in real granular media in a highly nonlinear
regime.

We model the granular material (GM) as a collection of
spheres interacting as follows (for studies on the properties
of GM with other potentials, see [8,9]):

V(&„) =
lJ 0 r )

where r;, = ~r; —r, ~
is the separation between grains

i and j, 6;~ —= r, —r;, is the grain overlap, and r, . is
the cutoff distance for the potential. V(6;, ) leads to a
repulsive force between grains in intimate contact [7].
For noncohesive spheres, it can be shown that n = 5/2
[5]. For grains with conical imperfections, on the other
hand, n = 3 [5]. We study the system for arbitrary n to
recover and extend upon the scaling law for c at large
z. In addition, we subject the grains to the gravitational
force F = —mgz, z being the unit vector in the vertically
upward direction and m the mass of the grain. In all of the
simulations units are employed in which m and 2r,. are set
equal to 1 and g is set equal to 0.01. The system dynamics
is obtained by time integration of the coupled Newtonian
equations of motion for a N [—O(10 )] grain system via
the third-order Gear algorithm [10] using a time step in
the range 1.0 X 10 to 5.0 X 10

We first focus on pristine systems. Given that c
depends sensitively on 6, care is taken to insure that the
column is relaxed (to the extent possible in a numerical
study) and is hence in its "ground state" thus possessing
zero effective granular temperature (i.e., total kinetic
energy —0). This step is critical for the study of
the perturbation that we initiate in the system (via a
very low energy impact) to probe the nature of vertical
sound propagation in granular columns. The method of
determining the ground state is as follows. For a 1D
system consisting of a single gravitationally compacted
column, the location of the bottom grain is first fixed
and the positions of the remaining grains are set such
that the repulsive forces due to the overlap between
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the adjacent grains exactly equal the forces required to
support the grain column. For a system of W grains
in which the bottom grain is labeled 1, the overlap
between grains i and i + 1 is determined via the 1D sum
rule gg, +, mj = an6,';+'~. For the 2D case, the initial
configuration is taken as the gravitationally compacted
perfect triangular lattice. The coordinates of the bottom
row of grains are fixed and periodic boundary conditions
are imposed in the horizontal direction. In most of
the 2D simulations, a large height to width aspect ratio

1000 was chosen. In complete analogy with the
1D systems, the overlap between the grains in adjacent
rows is determined via the 2D sum rule gg, , +, m, =
an6,",+', Ql —1/(2 —26;;+~/r, )~ for 6;;+~. The 2D sum
rule is obtained by allowing the separation between grains
in adjacent rows to be reduced from I., to r, —6 so
that the z components of the intergrain forces balance
the weight of the supported column, while the distances
between grains in the same row are kept constant. The
separation between adjacent rows i and i + 1 is then
reduced from the uncompacted triangular lattice row
separation by the amount

Az =
2 r, 1 — 1 —3„(2r,6 —62)4

c

For the weakly disordered system, starting from the
equilibrium configuration for the gravitationally com-
pacted 2D triangular lattice, we remove the grains in a
"semirandom fashion, " i.e., a grain is removed from a
randomly chosen site for every i rows. The configu-
ration thus obtained, though significantly ordered in the
sense that each grain still very nearly resides at a per-
fect triangular lattice site, possesses considerable disorder
in the force network. The removal of grains using the
above mentioned procedure allows one to tune the poros-
ity and the degree of disorder in the system. The simu-
lations were limited to cases with up to 12.5% of the
grains removed (i.e., up to void concentrations of 12.5%).
Upon removal of the grains from the lattice, the system is
no longer in its ground state. Obtaining the new global
ground state would require relaxing the system until all of
the voids were filled and the compacted triangular lattice
was recovered. Instead, we wanted to obtain a metastable
state in which the energy is at a local minimum and the
voids are trapped in the lattice. We have tried several ap-
proaches to find the metastable configuration. Although
it is not the only viable approach, we found that inte-
grating the Newtonian equations of motion with an addi-
tional time-dependent viscous damping term of the form
F = b(t)v is an efficient —way to relax the system into
a metastable configuration in which the positions of the
voids are preserved and the effective granular tempera-
ture does not rise significantly after the viscous damping
is turned off.

In all of the simulations, the sound speed was deter-
mined by monitoring the position of the weak perturbation
in the column as a function of time. The perturbation was

initiated at time t = 0 by imparting an initial downward
velocity to the top particle or row of particles. For the
pristine 1D and 2D systems, initiating the weak perturba-
tion in this manner results in a spatially well-defined pulse
that travels downward through the column. Although
there was some tendency for the pulse to broaden slightly
over time, the shape of the pulse remains approximately
invariant over the course of the simulation. The location
of the pulse was defined by the position of the particle
or row of particles with the highest velocity, and its local
speed was determined from the time derivative of pulse
location. To simplify the analysis of the results, the sys-
tem parameters were chosen so that the density of the col-
umn as a function of depth does not change significantly
due to compaction. This requires that 6&2 « r, /2, or .in
terms of the system parameters (mgN/an)'~~" '~ && r, /2
Since sound speed scales as c —Qp, /p [7j, p, being the
bulk modulus, and p being the density, variations in c
as a function of depth in the column are due entirely to
changes in the stiffness of the system.

We have performed the simulations for a family of po-
tentials with a set of values for n in Eq. (1), and for a set of
magnitudes of the initial perturbations, v; p„,. Although
experimental and theoretical works indicate that the po-
tentials that best describe real systems are V(6) —65~2 for
contact between perfect spherical grains and V(6) —63 for
contact between grains with conical imperfections, calcu-
lations were carried out using a range of exponents from
n = 5/2 to n = 10 in order to study the power law de-
pendence of sound speed as a function of depth and de-
viations from the predictions of the theory. The results
of these calculations are plotted in Fig. 1 for n = 5/2 and
n = 6. For small v'

p 1 c k determined from the 1D
simulations scaled with depth as c~„k —z ' ' ~" '~~ . At
higher v'

p 1 and small z, we saw large deviations from
the above law, with the deviation increasing with v; p„,.
In these studies, c„„„~does not show a simple power law
behavior (i.e. , z'~6 or like) until greater depths are reached
where it asymptotically approaches that found in the low
v p 1 studies. c„„„~increases more slowly with z than
z'~6 for small z (see Figs. 1 and 3). The relative differ-
ence between c for large v; p„, and v; p„, 0 can be de-
fined as g(z) = (c„„„s—c „k)/c„„k. A functional form
for g(z) is expected to decrease monotonically as z in-
creases and show the limiting behaviors lim, o $(z)
and lim, g(z) ~ 0.

Having attempted many different functional forms
to fit s(z) we conclude that $(z) does not follow a
simple power law behavior. The results of nonlinear
curve fitting show that the functional form of g(z) is
well approximated by a function in z which is best
expressed as g„bk exp( diaz) where the —coefficients
bk and dk follow the recursion relations bI, +~ = bj, n and
dq+i = dqP with n and P constants that depend on the
choice of system parameters. As an example, a best fit
of g(z) over the range 100 ( z ( 10000 for v; ~„, = 1.0
and n = 3 to a triple exponential function gives
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FIG. 2. Velocity power spectra for grains at five different
depths, z = 100, 200, 400, 800, and 1600, in a 1D column
due to passage of vertical disturbance. Shown for comparison
is the velocity power spectrum for a particle in an infinite
harmonic oscillator chain. The system parameters are n = 5/2
and v; p f 0.05.
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position. The leading term in a power series expansion
of the force about dz = 0 is —2a(n —1)6" 'dz, hence for
a strongly confined grain in the limit of small amplitude
oscillations the behavior approaches that of a harmonic
oscillator.

FIG. 1. Speed of vertical disturbances in 1D columns for
(a) n = 5/2 and (b) n = 6. Solid lines show scaling behavior
predicted from generalized Hertzian contact theory. Slopes of
lines in (a) and (b) are 1/6 and 2/5, respectively.

100—

the result g(z) = 0.04107 + 0.2519exp( —0.0003244z) +
0.4527 exp( —0.001 911z) + 0.8019exp( —0.010 19z), which
has four parameters. For this case a = 1.8 and P = 5.8.
n and P are both greater than unity, insuring that $(z)
converges for all g ) 0 and diverges at g = 0. Although
n and P depend on v; ~„, and n, in all cases studied both
quantities are found to be greater than 1. It is reasonable
to argue that at each value of g, as the strong perturbation
propagates progressively downward, some energy goes
to promote local excitations. It follows then that as
z ~ this energy loss becomes vanishingly small. Our
calculations suggest that the origin of the above recursion
relation lies in this iterative process. At this time we
are unable to provide a simple explanation for the above
functional form for $(z) for this highly nonlinear process.

Typical velocity power spectra for grains at five differ-
ent depths in the 1D column during the passage of a ver-
tical disturbance are shown in Fig. 2. As one goes deeper
and deeper into the column, one finds that the grains are
more strongly confined to their equilibrium positions and
that their velocity power spectra approach that of a mass
in an infinite harmonic oscillator chain [11,12]. For a
deep lying grain the total force on the grain is approxi-
mately F = a(B —dz)" ' —a(6 + dz)" ' —mg, where
dz is the displacement of the grain from its equilibrium
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FIG. 3, Speed of vertical disturbances in 2D columns for
(a) n = 5/2 and (b) n = 6. Solid lines show scaling behavior
predicted from generalized Hertzian contact theory. Slopes of
lines in (a) and (b) are 1/6 and 2/5, respectively.
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FIG. 4. Speed of vertical disturbances in 2D columns with
voids for n = 5/2 in the limit of weak impact. Solid lines are
the best fits of the data to the functional form c = az". Inset
shows the prefactor a plotted against 1 —e illustrating linear
dependence of c on void fraction.

To understand the behavior of est„„g let us return to the
Hertzian contact theory in which c „k —~k, k = df/d 6,
f —Ir'" ' for V(B) —Ir'", n ~ 2. In this theory, one
assumes that although k is a function of z or P it is
essentially constant during the passage of a perturbation.
This assumption fails for large perturbations and hence
cs„,„g does not scale with z as c „k does. To study
c„„„s(z)one must therefore solve for 6(r) in d~6/dr~ =
—an6" ' subjected to appropriate initial conditions on 6.
For fixed total energy, knowledge of 6(t) and hence of
V(t) will yield information about v;(t) of the individual
grains, which in turn will yield the behavior of est„„g as a
function of z.

The results of calculations on 2D systems are consis-
tent with those from the 1D simulations. The same scal-
ing of sound speed on depth and deviations from the
generalized Hertzian theory for strong perturbations are
observed in the 2D calculations. The results of the 2D
simulations on the systems without voids are shown in
Fig. 3. We find that in the limit of weak perturbation
c„„k ~ P ' 'I(" ')]I~ in pristine 2D systems (see Fig. 3),
while c ~ (1 —e)P(' 'I(' ')]I~ for weakly disordered 2D
systems with void fractions of up to 12.5% (see Fig. 4).
The main difference between the perfect and perturbed
systems is that in the 2D systems, with voids, inhomo-
geneities in the force network lead to a significant transfer
of energy from the coherent elastic disturbance into the
random motion of the particles. Figure 5 shows the av-
erage grain kinetic energy as a function of z for a system
with 3.3% void fraction. With the exception of the strong
dissipation of the pulse in the topmost, loosely packed
layers of the system, the details of the sound propagation
in the 2D systems with and without voids are unchanged.
On the basis of our calculations for 2D columns, we find
it reasonable to expect similar behavior for close-packed
(hcp) 3D systems. The issue of sound propagation in both
close-packed and randomly packed 3D columns will be
addressed in the future to definitively answer this point.
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FIG. 5. Average kinetic energy as a function of depth for
sound propagation in 2D column with 3.3% void fraction,
v'

p
t: 0 1 and n = 2.5.

In conclusion, we have performed molecular dynamics
simulations to recover the elasticity theory based result
c „k —I''~ at large depths from microscopic considera-
tions. Our approach allows us to probe new issues with
regard to the propagation of perturbations in real granu-
lar columns. These issues are (i) propagation of weak
perturbations in shallow depths, (ii) propagation of strong
perturbations at all depths, and (iii) propagation of weak
perturbations in granular columns with voids. In addition,
we argue that the velocity power spectra of grains at large
depths can be understood by studying the velocity power
spectrum of particles in a harmonic oscillator chain.
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