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First results on microwave billiards with broken time reversal symmetry are presented. The billiards
are quasi two dimensional with an attached microwave isolator acting as a unidirectional transmission
line. Spectral level dynamics was studied by changing the billiard length. For all spectral properties
observed, i.e., nearest-neighbor distance, asymptotic curvature, and closest-approach distance at avoided
crossings, we have found behavior characteristic of the Gaussian unitary ensemble.

PACS numbers: 05.45.+b

Classically chaotic systems with time reversal invari-
ance display linear level repulsion in their quantum spec-
tra, just as if the Hamiltonian were a matrix drawn
from the so-called Gaussian orthogonal ensemble (GOE)
of random matrices [1-7]. If time reversal invariance
could be broken one would expect, again under condi-
tions of classical chaos, quadratic level repulsion, as is
typical for matrices from the Gaussian unitary ensemble
(GUE). However, no spectra with GUE statistics have
been seen in any experiment so far.

To enforce quadratic level repulsion for, e.g., a molecu-
lar spectrum one would have to apply a magnetic field
which is (i) substantially inhomogeneous across the mol-
ecule and (ii) sufficiently strong to shift a typical level
by at least a typical level spacing [1]. Such requirements
are still a bit outrageous even in the Rydberg regime of
excitation.

We report here experiments on microwave resonators
of billiard shape with broken time reversal invariance.
We achieve the desired destruction of the anticanonical
symmetry for our “photon billiard” by extending the bil-
liard by a “handle” with one-way propagation characteris-
tics. Unidirectional propagation through the handle is due
to the insertion of ferrites which have been used for many
years in standard microwave components such as bridges
and isolators.

A microwave isolator is a device which in the ideal
case has perfect microwave transmission in one direction
and none in the reverse one. It works as follows
[see Fig. 1(a)]. A stripe of ferrimagnetic material is
placed off-centered in a microwave guide. The electron
spins precess about a magnetic field perpendicular to
the direction of microwave propagation. Because of
the off-center position of the ferrite the propagating
microwaves produce a rotating B field at the site of every
spin, clockwise or counterclockwise, depending on the
propagation direction. In the resonance case microwaves
whose B rotates in the same sense as the spins are
absorbed, whereas waves with their B turning in the
opposite sense pass the isolator unattenuated [8].
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The experiments were performed in a microwave cavity
with height # = 0.78 cm and a fixed width of b =
23.71 cm [see Fig. 1(b)]. The length a could be varied
between 35 and 42 cm. On one short side a waveguide
was attached with a built-in microwave isolator (model
62 IGR, Isoguide Co.). Its attenuation was >30 dB in one
direction and <1 dB in the reverse one in the frequency
range 12 to 19 GHz. The movable part of the wall could
be exchanged to form either an asymmetric Sinai billiard
(formed by a rectangle and a quarter circle), a Sinai
billiard with mirror symmetry (formed by a rectangle and
two quarter circles), or a rectangular billiard.

The measuring technique is the same as described ear-
lier [4,9]. Microwaves are fed into the resonator via an an-
tenna, and the microwave reflection spectrum is taken. In
the applied frequency range 12 to 19 GHz the resonator is
quasi two dimensional, and there is a complete equivalence
between the Helmholtz equation and the time-independent
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FIG. 1. (a) Scheme of a microwave isolator: a stripe of fer-
rimagnetic material is placed off-centered within a waveguide.
A transverse magnetic field is applied. (b) Sketch of the appa-
ratus: on one short side of a microwave resonator a waveguide
with a built-in isolator is attached. The other short end can be
moved to study level dynamics.

© 1995 The American Physical Society



VOLUME 74, NUMBER 14

PHYSICAL REVIEW LETTERS

3 APRIL 1995

Schrodinger equation. Experimentally a density of states
was obtained in agreement with Weyl’s law up to about
5%. Thus the isolator seems not to reduce the density
of states. However, the area of the attached waveguide
amounts to only 10% of the total area. A reduction in the
density of states of this order of magnitude might just es-
cape detection. We tried to repeat the measurements with
a larger ratio of areas of waveguide and billiard. As the
area of the waveguide was more or less fixed by the dimen-
sions of the isolator, we reduced the length of the billiard
to 20 cm. Unfortunately, the number of eigenvalues in the
accessible frequency region was then so much reduced that
the results obtained were not usable.

For the experimental determination of the density of
states we had to study the change of the spectra with the
cavity length. It was demonstrated earlier [9] that it is
thus possible to get all eigenvalues, even those missed in
one or the other of the individual spectra. The fractional
loss of levels in the individual spectra amounted to a =
0.39 for the asymmetric Sinai and even @ = 0.51 and a =
0.49 for the symmetric Sinai and the rectangular billiard,
respectively. Such deplorably large loss is the price to be
paid for the insertion of the microwave isolator.

Because of the loss of levels the measured histogram
P(s) of nearest-neighbor spacings must be interpreted with
care (to avoid prejudices we refrained from replacing lost
levels by invoking level dynamics here). If an eigen-
value is missed with probability « then only the frac-
tion (1 — a) of all experimentally found nearest neighbors
really corresponds to nearest neighbors, whereas the frac-
tion a(l — «) corresponds to next nearest neighbors, etc.
Let p(n,s) denote the probability to find an eigenvalue at
a distance s of a given other eigenvalue, with exactly »
additional eigenvalues in between. Then the experimen-
tally found P(s) can be expressed as

P(s) =0 — a)[p0,s) + ap(l,s) + a’p2,s) + ---].
(1)

As there is no simple analytical expression available for
the p(n,s), we made an ansatz in the form

pln,s) = ystels, ()

The repulsion exponent u equals 1 for nearest, 4 for next-
nearest, and 8 for third-nearest neighbors in the GOE case.
For GUE systems the corresponding numbers are 2, 7,
and 14, respectively [10]. The coefficients y and B are
obtained by normalizing as

/p(n,s)ds =1,

Distributions of the form (2) are known as Wigner’s
surmises for the densities of nearest-neighbor spacings
of which they actually are excellent approximations
[1]. Since the next-nearest-neighbor distribution for the
GOE is identical to the nearest-neighbor distribution for

fsp(n,s)ds =n+ 1. 3

the Gaussian symplectic ensemble (up to s — 2s, see
Chap. 10 of Ref. [10]), the approximation (1) must be
fine for pgor(l,s) as well. To check the faithfulness
of (2) to the remaining cases, pgos(2,s), pcue(l,s), and
pcue(2,s), we evaluated these functions both from (2)
and (3) and the corresponding power series given in
Ref. [10]. The agreement is slightly worse than for the
nearest-neighbor distributions of the GOE, GUE, and
GSE but acceptable for our purpose.

Figure 2 shows the nearest-neighbor distribution for the
asymmetric Sinai billiard with broken time reversal sym-
metry. The solid line was calculated from (1) assuming
GUE statistics and @ = 0.39. The inset shows the his-
togram for small s and clearly exhibits quadratic repulsion.
It should be noted that because of the high repulsion expo-
nent for next-nearest neighbors the experimental loss does
not influence the histogram at small distances. The loss
becomes effective only for s > 1 and is responsible for
the bumps observed in the histogram at larger values of s.

Additional tests of random-matrix theory are possible
by employing level dynamics. It was shown by Gaspard
et al. [5] that the curvature distribution P(K) is given
asymptotically by K~**2 where v is the universality
index. For ordinary billiards one therefore expects an
asymptotic K~ behavior which was found both in cal-
culations for a stadium billiard [11] and experimentally in
a microwave billiard [7]. The curvature of an eigenvalue
is given by K, = ¥,/{(x,)?), where ((x,)?) is a local aver-
age of the squared “velocity” and the dot means derivative
with respect to the billiard length. Figure 3 shows curva-
ture distributions for the asymmetric Sinai billiard on a
double logarithmic scale. The asymptotic slope obtained
from a fit to the experimental data is somewhat arbitrary,
since the measurement gives no clear indication for the
beginning of the asymptotic region. If the first two his-
togram values in Fig. 3 are omitted from the fit, one gets
a slope of —4.22, again in good agreement with the GUE
expectation.
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FIG. 2. Distribution of nearest-neighbor distances for the
asymmetric Sinai billiard with attached isolator. The solid
line displays GUE behavior. The inset shows quadratic level
repulsion at small distances.
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FIG. 3. Curvature distributions for the asymmetric Sinai
billiard. The slopes of the straight lines are —3 and —4,
respectively.

The last point to be discussed is the distribution P(c)
of closest-approach distances ¢ at avoided crossings. Za-
krzewski and Ku$ [6] derived the distribution P(c) =
(7 /2)c exp(—mc?/4) for the GUE, where the ¢ are nor-
malized to a mean distance of one. Figure 4 shows our
experimental results for the asymmetric Sinai billiard.
The full line corresponds to the GUE behavior just men-
tioned. Again, good agreement between experiment and
random-matrix behavior is found, except for the smallest
values of c¢. If the distance between neighboring eigen-
values becomes smaller than the mean linewidth, the reso-
nances cannot be separated, whereupon avoided crossings
with very close encounters are underestimated in their
number.

We now present our results for the symmetric Sinai and
the rectangular billiard. Intuitively, one might expect that
the break of time reversal symmetry by the isolator is
compensated by the apparent mirror symmetry, so as to
give rise to some generalized time reversal invariance.
Such expectations are unambiguously refuted by the
quadradic level repulsion we have measured for the
symmetric Sinai, shown in Fig. 5. Curiously enough the
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FIG. 4. Distribution of closest-approach distances at avoided
crossings for the asymmetric Sinai billiard. The solid line
represents the expected GUE distribution.
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rectangular billiard, which is no more symmetric than the
symmetric Sinai, yields data suggesting linear repulsion,
as also shown in Fig. 5. It is actually not only for P(s)
but also for the curvatures and the closest approaches that
the rectangular billiard seems to present itself as a GOE
system.

A few words about theory are now in order. First, we
should indicate how well-defined resonances with GUE
statistics can arise in spite of strong unidirectional damp-
ing. In principle, one could ascertain such resonances by
solving the wave equation with ideal-conductor bound-
ary conditions at the walls and boundary conditions at the
ports of the isolator expressing unidirectional damping.
Arguing more phenomenologically [12] we may think of
the eigenvalues of a non-Hermitian “Hamiltonian” of the
form H(y) = Hog + iyI with Hermitian N X N matrices
Hj and I' of large dimension N and a positive dimension-
less coupling constant y. It is important that among the
N eigenvalues of I" some, say N/, be negative and the re-
maining ones vanish. The negative eigenvalues of I" can
be associated with decay channels. The complex eigen-
values E(y) = ReE + iImE of H(y) then have negative
real parts which can be interpreted as the widths of the
resonances located at the real parts ReE.

Now in the limit of strong damping, v > 1, Hy is but
a small perturbation of I'. The N eigenvalues of H(y)
thus fall in two clouds in the lower half of the complex E
plane. One cloud consists of the perturbed versions of the
nonvanishing eigenvalues of iyI" which move downward
toward —io with increasing y. The more interesting
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FIG. 5. Nearest-neighbor distance distributions for the sym-
metric Sinai (a) and the rectangular billiard (b) with attached

isolator. The solid lines were calculated assuming GUE and
GOE behavior, respectively.
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cloud of N — N’ points crouches immediately below the
real axis such that the imaginary parts ImE are much
smaller in modulus than the spacing between the real parts
ReE. In fact, these ReE can be obtained by diagonalizing
Hp in the N — N’ dimensional subspace spanned by the
eigenvectors of I' with vanishing eigenvalues. Clearly,
the statistics of these N — N’ resonances ReE must reflect
the symmetries of Hy: GOE statistics prevails in the case
of time reversal invariance while GUE statistics arises
when that invariance is broken [13].

The data presented above suggest that the effective
number N’ of channels is small, N’ << N; otherwise, the
resonances found could not obey Weyl’s law as well
as is actually the case. Possibly, the small area of the
isolator is responsible for N << N. On the other hand, the
experiments certainly pertain to the limit of large y since
the one-way character of the isolator is well pronounced.

We finally turn to the effect of the isolator on the
symmetries of the billiard. We mimic the isolator by a
boundary condition in the plane x = 0 and look at a single
plane wave whose amplitude E(x,y, t) is given by

x <0

_ [(Ae™ + Be *¥)e"i@! + c.c.,
E { x>0 S

(Ce** + De~#x)e~iwt + cc.,

(the x axis is oriented parallel to the short side of the
billiard with the origin in the center of the isolator).
Since only the lowest transverse magnetic excitations
are of interest the only nonvanishing component of the
electric-field vector is the one normal to the plane of
the billiard; the amplitudes A, B,C,D are thus complex
numbers (which depend on k and y) rather than vectors.
The isolator can then be described by a 2 X 2 transfer
matrix M or, equivalently, by a 2 X 2 scattering matrix S

| (g)zM(g) (§)=s(;;) ®)

Obviously, M and S are uniquely related to one another.
For stable systems no eigenvalue of S can exceed unity
in modulus. Dissipation leads to eigenvalues of S with
moduli smaller than unity. Unidirectionality requires
unequal diagonal elements of S. Any symmetry of the
billiard would yield further restrictions on M and S.

The operation of conventional time reversal T,
T(E(x,y,t)) = E(x,y,—1t), acts on the two-component
vectors (2) and (g) as T = 0,C where C is complex
conjugation and o, = (?(1)) a Pauli matrix. Therefore
T invariance is equivalent to the relation M = o M" o
where M™ is the complex conjugate of M. However, in
a system with broken 7' invariance, such as the isolator
under consideration, this equation will not hold.

It is also interesting to discuss reflections in the plane
x =0, P(E(x,y,t)) = E(—x,y,t). P invariance, which
actually does not hold in the presence of the isolator even
if the shape of the billiard is otherwise symmetric under
x — —x, would yield the requirement M = oM 'o.

Were invariance under the generalized time reversal TP
present we would thus have MM* = 1.

In fact, unidirectional dissipative isolators break all
three symmetries mentioned, 7, P, as well as TP. In
particular, it is an easy game with 2 X 2 matrices to show
that TP invariance, MM™* = 1, implies unitarity of the §
matrix which precludes any dissipation.

In view of these arguments one would expect GUE
behavior for both the symmetric Sinai and the rectan-
gular billiard. For the symmetric Sinai billiard this is
indeed found in the experiment. For the rectangular
billiard, however, our data seem to suggest GOE sta-
tistics. But the above theoretical reasoning irrefutably
shows that TP invariance and unidirectionality are in-
compatible. Since unidirectional damping is manifest we
must rule out TP invariance. The way out of the con-
flict might be this: If the perturbation by the isolator can
be considered as small, pseudointegrable behavior is ex-
pected [14]. Nearest-neighbor distributions in the transi-
tion regime from Poisson to GUE behavior [15] may then
be hardly discernible from the corresponding GOE quan-
tities. In any case, more theoretical efforts seem indicated
toward a quantitative treatment of billiards with one-way
components.
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