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Nearby Doorway States, Parity Doublets, and Parity Mixing in Compound Nuclear States
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We discuss the implications of a doorway state model for parity mixing in compound nuclear states.
We argue that in order to explain the tendency of parity violating asymmetries measured in 3Th to
have a common sign, doorway states that contribute to parity mixing must be found in the same energy
neighborhood of the measured resonance. The work concentrates on novel nuclear structure input,
namely, that in the region of interest (~"Thl nuclei exhibit octupole deformations which leads to the
existence of nearby parity doublets. These parity doublets are then used as doorway states in a model
for parity mixing.

PACS numbers: 24.80.Dc, 24.60.Dr, 25.40.Ny, 25.85.Ec

Recent experiments on parity violation in compound
nuclear (CN) states [1,2] are providing new information
on the parity nonconserving (PNC) interaction. The ex-
perimental results for Th showed that measured PNC
asymmetries fluctuated about nonzero average, in contra-
diction to the purely random behavior expected on the ba-
sis of the statistical model of the CN. The understanding
of PNC phenomena challenges theory to treat simultane-
ously the chaotic and regular aspects of the CN system. A
number of attempts were made to explain the new results
in the framework of statistical models [3] or in models
that combine nuclear dynamics with the statistical aspects
[4,5]. Among the latter the doorway state approach was
used in several theoretical works [4,5]. In Ref. [4] the
spin-dipole (SD) resonance was used as the doorway to
describe the PNC spreading width of the compound res-
onances. Later the same model was applied [6] in the
calculation of the average longitudinal asymmetry. In
Ref. [5] the silq and p~l2 single-particle states were used
as the doorway states in an attempt to explain the con-
stancy of signs. The common feature of these models is
that they deal with distant doorways and involve only the
one-body part of the PNC interaction. The term "distant
doorways" refers to the fact that the position of the door-
ways is removed by 1h~ —7 MeV from the CN reso-
nances under consideration. The model in Ref. [4] which
involved the collective effects of the spin-dipole reso-
nance was able to account for the PNC spreading width
when a reasonable [7] value for the one-body PNC matrix
element was used. However, when the same size matrix
element was used, the average asymmetry was 2 orders of
magnitude smaller than measured. Recently more exten-
sive theoretical investigations characterized several terms
that could contribute to PNC asymmetries in the CN [8,9].
However, the new terms were not large enough to explain
the large nonfIuctuating asymmetry.

The quantity measured in the experiments with polar-
ized epithermal neutrons is the longitudinal asymmetry

P E„ (E,) — -(E,)
o+(E„) + o(E„)'---

where o-+, o- are the resonance part of the total cross
sections for neutrons with positive and negative helicities,
respectively. The scattering is to a compound resonance

l

lr) at energy E„carrying the quantum numbers 1 =
z

We will refer to these resonances as pl/2. The leading
term of the asymmetry P can be written [6,9]

P(E„) = —2+ ( lvPNc
l ) (2)

g (E, Ea) (dl V"'lr)ya—
, [(E, —E.)'+ I'/4]y, (3)

where yd is the escape amplitude of the doorway. Here
I d is the width of the doorway resulting from the coupling
of ld) to the states ls').

The PNC spreading width in the doorway approxima-
tion is given by [4]

I lpNc

(Ea —E„)' + I a/4

where y, and y, denote the escape amplitudes from
resonances lr) and ls) due to the strong interaction
force y„= (4„1lHlr), y, = (4', lHls), where 4&+ and

denote the continuum p- and s-wave functions
in the elastic channels. The sum in Eq. (2) extends
in principle over all states ls) that have the quantum

1+numbers J = 2+. To reduce the sum in the equation
one often introduces the doorway state approximation
[10,11]. One seeks a subspace of states ls), denoted by
ld), such that the coupling between these states and the
states lr) —(rlV ld) is sizable or that the coupling
between ld) and the continuum is strong or that both
conditions are fulfilled so that when the sum in Eq. (2)
is replaced by the partial sum over states ld) the result
will be a good approximation to Eq. (2). In a formal
treatment [9—11] one divides the space of states ls) into
(s) = (d) + is' ). Assuming that the signs of the matrix
elements (r l V ls') are randomly distributed one derives
[9—11] the following expression:
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where I d is the spreading width of the doorway.
In the analysis of the recent class of experiments two

basic quantities are determined [1,2]. Taking the ensem-
ble of states lr) one determines the average asymmetry P;
the fluctuating part of the measured asymmetries yields
the PNC spreading width in a given nucleus. In Th
the analysis [2] yields for I ipNc = 7.4 X 10 7 eV and
P = (8 ~ 6)%. Equations (3) and (4) will be the basis
of our discussion of the above two quantities. Let us first

apply these equations to the case of "distant" doorway
states. This was already the subject of study in Refs. [5]
and [9], and we repeat this case in order to emphasize the
difficulty one faces. Consider a one-body PNC potential
of the form [12]

V = e10 2 g(f(r ) o; p;c), (5)

where f(r) is some function of the distance r and the curly
brackets denote the anticommutation operation. For this
potential the doorway that will couple strongly to the state
lr) is the giant spin-dipole resonance (see Refs. [4,9]).
The energy centroid of the spin-dipole resonance built on
lr) is in 2~3Th about 7 MeV above Eo. The width of the
spin dipole is several MeV, and for the sake of an estimate
let us take I so = 3 MeV. (In our estimates we do not
distinguish between the total I d and spreading I d widths
since the two are numerically not very different in reality
for the cases we consider in this work. ) In Refs. [6,9] the
ratio of the escape amplitudes in Eq. (3) was shown to be

ysD

y„~N &R ~N
(6)

where ~3/kR is the ratio of penetrabilities and N —100
is the number of particle-hole excitations that make up
the collective spin dipole in ~32Th. Using Eq. (3) and the
value for P of 8% and the above values for the width and

energy of the SD doorway we find

&rlV"'ISD) = 3000 eV. (7)

If we now use Eq. (4) to estimate the collective PNC
matrix element with the above values for Ed and I d, we
find that (rlV NclSD) = 3 eV. There is a discrepancy of
3 orders of magnitude with the value obtained in Eq. (7).

This leads us to the conclusion that one must go beyond
the idea of distant doorway states and address the question
of the role of nearby doorway states. Let us consider the
following physical scenario: The compound state, which
shows up in experiment as parity mixed, is close to a
doorway so that the difference lE„Edl ( I d and th—at
I d = 100 eV. Let us take for the sake of the estimate
the value of lE„—Edl = I d/2. Let us also assume that
the ratio yd/y„ is as before 103 due to the penetrability
effect. Using again Eq. (3) we find for the PNC matrix
element the value (rlVP cld) = 4 x 10 3 eV, while then

using Eq. (4) we estimate for this matrix element the
value (rl VPNc ld) = 6 x 10 eV. The two numbers are
not contradictory as they were in the previous distant
doorway case.

Let us now develop this idea further. In various re-
actions with low energy protrons or neutrons and with
good resolution one observes in the excitation functions
structures that have a width I d that is intermediate be-
tween the single-particle I, p and the compound width
I „, I, d » I'd » I „[11,13]. These intermediate reso-
nances are usually nonoverlapping, and their spacings Dd
are such that D, p » Dd ~ D„.

In heavy nuclei in the vicinity of A = 240 intermediate
structure was seen and studied extensively. The most
striking and most intriguing example is the intermediate
structure observed in neutron-induced fission (n, f). The
cross section seen in these reactions shows groupings
of compound states that are enhanced. The width of
each such enhanced bump is about I d = 200 eV, and the
bumps are spaced about Dd = 700 eV. A very elegant
explanation of this behavior of the (n, f) excitation
function was given in terms of a double hump fission
barrier [14].

Let us now use this information about the intermediate
structure to consider some models for parity violation in
these heavy nuclei. We first consider a model which
connects to the observation of intermediate structure in
the (n, f) reaction. The fact that the (n, f) process
shows intermediate structure at some excitation energies
indicates that the mixing is enhanced for some positive
parity compound states lq ) that are in the vicinity of the
fissioning positive parity states

l
f+).

The two-body effective PNC interaction derived using
the meson-exchange models [7] and the two-body nuclear
force have both similar ranges. We therefore assume
that the strong interaction matrix element that couples
l
f+) and lq+), ( f+lHlq+), and the weak matrix element

(rlV l f ) are related.
One can write

(@, lHlf')(f'lV' lr)(rlHl4 )T=
(E —E„+ i I „/2) (E —Ef. + i I f /2)

' (8)

which is the PNC T matrix for neutron scattering in the
doorway state approximation [9] with the doorway being
the fission state l f+). The corresponding asymmetry is
then

(E, —Ef ) &~", 'IHI f")( f+ IV'
P(E„) = —2

( )
', . (9)

(4, lHlr) [(E„—Ef.)' +; if'. ]

The enhancements observed in the (n, f) reaction will also
occur in the asymmetry given in Eq. (9) if the compound
state lr) is in the vicinity of the doorway l f+).

It is remarkable that in 33Th (as well as in 'Th)
one finds [14—16] that the energy potential as a function
of deformation is triple humped. It has been shown
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[15] that the existence of the third minimum in the
potential is related to the appearance of pearlike octupole
deformations in the body frame of reference. This
spontaneous breaking of reAection symmetry implies the
existence of nearby (a few tens of keV apart) parity
doublets [17—19]. In fact, at somewhat higher energies
than considered here such doublets were observed in Th
in the (n, f) experiments [16]. It is worth mentioning
that the states in the third minima belong to the class of
hyperdeformed states with large quadrupole and octupole
deformations [15,20].

Consider now such a I =
z
"—doublet denoted by I f )—

The energy difference IEf. —Ef Iis e-qual to a few
tens of keV, which is, of course, small but larger than
IE„—Ef I or I f.. Let us now single out the I f )
component in the wave function of Ir),

lr& = arf If & +-lr'&. (10)

&f'l~"'lr& = a,f &f+I~'"-If )

In order to evaluate the average part of P(E„) let us
proceed with this model and use Eq. (10) to estimate
(4&(+) IH Ir). Recognizing as before that the component of
I f ) in Ir) is relatively large and that I f ) connects to the
exit channel as the (n, f) experiments show we may write

We drop the contribution of Ir') to the matrix element
in the above equation (i) because in view of the (n, f)
experimental results the coupling of Ir) to I f ) should
dominate, meaning that a„f is relativ-ely large and (ii)
because of the close relation between I f+) and I f )
the PNC matrix element should also be relatively large.
Substituting Eq. (11) into Eq. (9) we find

&f" l~" lf )(E. —Ef )(4", 'IHlf')a, f
[(E, —Ef.)'+;If' ]&+. IHI )

(12)

resonances [11,13]. It would be of considerable interest
to extend the measurements of P in Th to somewhat
higher energies (E„)500 eV) and see whether the sign
of the asymmetry is reversed for resonances that can be
found at these higher energies. We should stress that
these properties are quite general and independent on the
particular nature of the doorways involved. (See also
Refs. [6] and [9].)

Realizing the fact that we deal with parity doublets
having similar structure we take the ratio of the two
escape amplitudes from I f ) and

I f ) to depend only
on the penetrability factor which is about 103. Taking
from the experiment [2] the value P = 8 X 10 and using
IE, —Et+I = lf /2 we derive from Eq. (14)

f+lgvNcl f =4x10 '.
If+

(15)

For I f+ ——200 eV the PNC matrix element is

I( f+IV cl f )I = 10 eV. This is not an unrea-
sonable value for such a matrix element. In order to write
down an expression for the above PNC matrix element we
use the formalism of Ref. [21] to write the wave functions
of the parity doublets. We consider an odd-mass nucleus.
Let us denote by ~0+ and go the wave functions of the
intrinsic core states on which the two opposite parity
K = 0 core bands are built. Denoting the odd-particle
opposite parity states as @x- and @x the wave functions
I f+) and I f ) for a given K in this model are

If')Mr = [(21 + I)/16~']' '
X (a~Xo [/~DMS(~) + (—1)' Px D~ ~(cu)]

+ b+No [@xDM~(cu) + (—1)'+ P~DM r. (co)]'I,

If )' = [(2I+ I)/16

X (a Xo [Pi DMx(cu) —(—1) Px DM rc(~)]

-+0 [4~DM~(~) —( 1)" 0,'DM —~(~)]'t, —

(16)

&4 (+)
I H I r) = a, f(C&„+()IHfl) .

Substituting this into Eq. (12) we find

(13) where DM& denote the Wigner rotational matrix and K
indicates the time reversed state. Simple algebra leads to
the following expression for the PNC matric element:

(f'l~' If &(E, —Ef )&~", 'IHlf'&
P(E,) = —2, (

'l

[(E, —Ef-)' + —, If'-]&@ IHlf &

(14)

We see that except for the energy difference in the
numerator the sign of P is independent of Ir) and is
fixed. Also, within a limited range of E, the value of
P(E„) will not change much. If the compound states Ir&

observed in experiment are located on one side of Ff+,
the asymmetries P will have the same sign. A change in
sign should occur when the energies E, cross Ff+. This is
similar to the circumstances that occur in isobaric analog

&fM~II" 'IfM~& = (a+a- —b+b )&A~II'"'I@~&-

(17)

Finite matrix elements are obtained when there is an
energy splitting between members of the doublet. The
matrix element in Eq. (17) was calculated using the PNC
interaction of Eq. (5) and wave functions calculated in a
Nilsson potential for a deformation corresponding to the
third minimum of 233Th [15]. Using a value for e that gives
a single-particle PNC matrix element of the size of 3 eV
we obtain here PNC matrix elements that range typically
between 10 and 10 eV. This is in the range of the
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estimate given in Eq. (15). We should remark that using
the model in Ref. [21] we calculate the corresponding
energy splitting between

~
f+) and

~ f ) to be in the range
of 1 —40 keV in agreement with the measured ones [16].

It is interesting to evaluate the contribution of the
~
f+)

doorway to the spreading width. Using the same param-
eter as in the estimate of Eq. (15) we obtain with the
help of Eqs. (4) and (11) a spreading width of I'tpNc =
6.4 && 10 a„f- eV. Since a,f- ~ 1, the contribution of
the

~
f+) doorway to the I 1 Nc does not exceed the experi-

mental spreading width. It should be understood, however,
that the mechanism involving distant doorway states does
contribute substantially to the PNC spreading width of ~r)
when a reasonable PNC matrix element is used [4,6].

We should mention that the breaking of reflection
symmetry in the body frame of reference in actinides
A ~ 229 is well established. These nuclei exhibit [22]
(see Ref. [18]) at low energies octupole deformations

Ps ——0 —0.12, enhanced El transitions, and large dipole
moments in the body frame of reference. Experiments
that probe parity violation at the energies near the ground
states of these nuclei could be designed [23].

We also note that effects of parity violation were ob-
served in fission reactions induced by polarized neutrons
[24,25]. A theoretical discussion of this phenomenon was
presented some years ago [25] in which the notion of oc-
tupole deformations and parity doublets was invoked. The
connection between PNC effects in the (n, f) reactions and
the PNC experiments discussed in the present work should
therefore not be overlooked. The experimental study of
parity violation in the 32Th(n, f) reaction should shed ad-
ditional light on the role of shape isomerism played in par-
ity mixing in these nuclei.
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