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Quantized Energy Cascade and Log-Poisson Statistics in Fully Developed Turbulence
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It is proposed that the statistics of the inertial range of fully developed turbulence can be described by
a quantized random multiplicative process. We then show that (i) the cascade process must be a log-
infinitely divisible stochastic process (i.e. , stationary independent log-increments); (ii) the inertial-range
statistics of turbulent fluctuations, such as the coarse-grained energy dissipation, are log-Poisson; and
(iii) a recently proposed scaling model [Z.-S. She and E. Leveque 72, 336 (1994)] of fully developed
turbulence can be derived. A general theory using the Levy-Khinchine representation for infinitely
divisible cascade processes is presented, which allows for a classification of scaling behaviors of various
strongly nonlinear dissipative systems.

PACS numbers: 47.27.Gs, 47.27.Te

The statistics of fully developed turbulence exhibit cer-
tain universal features as a result of strong nonlinear in-
teractions. One set of intriguing quantities characterizing
universal behavior of turbulent flows is a set of scaling
exponents for two-point correlation functions, e.g. , g„of
the velocity structure functions defined by an expression
(Bvt ) —8&p, where Bvt = v(x + 8) —v(x) is a (longitu-
dinal) velocity difference across a distance Z. A similar
set of quantities is an exponent ~p for pth-order moment
of locally averaged energy dissipation e over a ball of
size 4: (et") —8". The range of the length scale 8 for
the above power-law behavior to be valid is called an in-
ertial range. Kolmogorov's refined similarity hypothesis
[1] provides a relation between these two sets of quanti-
ties: g„= p/3 + r„t3. This Letter addresses a predictive
model [2] of g„and r„. Note that g2 characterizes the
scaling for the kinetic energy fluctuations and is directly
related to the exponent for the kinetic energy spectrum
E(k) —k:n =1+ j2.

During the past half century since Kolmogorov's 1941
seminal work [3] that predicts r„= 0 and g„= p/3,
there has been a continual effort to experimentally de-
termine the values of g„or r„. There is now strong evi-
dence [4—7] that g„W p/3, which is usually referred to
as the intermittency effects or anomalous scaling expo-
nents. Many theoretical models have been proposed to
address this phenomenon. Some approaches start with an
ansatz of probability density function (PDF) of et such as
the log-normal model [2] or a log-stable model [8], for
example. Others [9—12] propose discrete random multi-
plicative processes (RMP) modeling the energy cascade.
The stochastic process that generates the energy cascade
is furnished by random multiplicative factors Wt, t, relat-
ing the fluctuations of e~ at two different length scales 8]
and Zz. et, = Wq, t, et, . By construction, the multiplica-
tive factor is independent of ez, . The probability distri-
bution of Wt, t, determines r„, since it is required that

log(Wt", t, )/ log(82/Zi) = r„. Existing cascade models of
random multiplicative processes [10—12] are obtained by
making an ad hoc ansatz for the PDF of lVt, t, being com-
posed of a certain number of discrete atoms described by
one or more adjustable parameters. The parameters in
the models are difficult to determine by plausible physi-
cal arguments. It is important to note that )4', t, specifies
an underlying process; its realization may not be the in-
stantaneous ratio et, /et, In o.ther words, the dynamical
meaning of RMP is yet unclear. Models based on log-
normal or log-stable generators have additional difficulties
at large p; they violate certain exact inequalities [13,14]
(see also [9]).

Recently, She and Leveque (SL) [1] proposed a new
scaling model, hereafter referred to as the SL model,
based on a characterization of turbulence in terms of a hi-
erarchy of eddies with excitation levels defined by succes-
sive moments: et = (et )/(et ). Each group of eddies

p+&

ez have a specific scaling behavior. The most singu-(p)
(oo)

lar group e~ is assumed to be filamentary structures ob-
served in both laboratory experiments [15] and numerical
simulations [16,17]; their scaling exponent was derived
based on physical considerations [1]. Scalings of less sin-
gular eddies et ( p ( ~) are related to that of the most(p)

(oo)
singular eddies e& by a recursive relation

(p+l) (p)P (-)i-P
Eg (1)

In such a setting, the scaling exponents ~p are completely
determined by the characteristics of the most singular
structures, i.e., their scaling exponent and the geometrical
dimension of their support. A prediction is made:
—2p/3 + 2[1 —(2/3)t']. The resulting scaling exponents
for the velocity structure function

g„= p/9 + 2[1 —(2/3)~t'] (2)
is in striking agreement with the most recent experimental
values obtained by Benzi et al. [5] for a fully developed
turbulent Row behind a cylinder (see Table I).
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Order p
Experiment

[5] Cp

0.37
0.70
1.00
1.28
1.54
1.78
2.00
2.23

SL model

[1] Cp

0.364
0.696
1.000
1.279
1.538
1.778
2.001
2.211

K41 [3]
&p

= p/~

0.333
0.667
1.000
1.333
1.667
2.000
2.333
2.667

TABLE I. Comparison of the experimentally measured scal-
ing exponents g„[5] and the theoretical prediction [Eq. (2)]
from the SL scaling model.

nq = exp(y6). We call this event a singular structure
event. The second event takes a value nsP with P ( 1

and corresponds to a modulation of the singular struc-
ture event by the factor P. This event will be called a
modulation-defect event. In the limit 6 0, nq 1; but

P ( 1, meaning the modulation is performed in a dis-
crete (quantized) way. In order to make ( Wz, t, ) = 1, the
probability to observe a modulation defect must go to zero
in proportion to 6. It is then simple to show that over
a finite separation of scales Z)Z„, where n6 = O(1), the
probability to observe X = m modulation defects obeys a
Poisson law,

~e, e,P(X = m) = exp( —At, t, )

The most dramatic assumption (and the most innovative
idea) in the SL paper [1] is the recursive scaling relation
(1) between different groups of eddies. It was speculated
[1]that Eq. (1) underlies some hidden symmetry in the so-
lution of the Navier-Stokes equations. Here, we propose
a quantized random cascade picture over a continuum of
scales, in which either an event leading to the formation of
a characteristic singular structure occurs or such an event
modulated by a defect. The defect adds a finite amount
of disorder to the singular-structure event. The quantiza-
tion of a cascade means that any cascade event can be
represented by the singular-structure event modulated by
an integer number of defects. It will be shown that this
quantized random cascade leads to a log-Poisson statis-
tics for inertial-range turbulent fluctuations, from which
the SL scaling result and Eq. (1) follow. Furthermore, we
discuss the consequences of a valid random multiplicative
description over a continuum of scales for the inertial-
range dynamics of the Navier-Stokes system. It is shown
that the statistics of the inertial-range fluctuations must
be log-infinitely divisible. With a general decomposition
theorem of infinitely divisible processes, we establish the
quantized log-Poisson process described above as the sim-
plest scenario (one singular structure and one quantum)
of cascade consistent with the infinite divisibility. This
analysis allows for a discussion of universality classes of
more general strongly nonlinear dissipative dynamics.

Assume that the inertial-range dynamics underlies a
random multiplicative process; the content of this assump-
tion will be discussed in detail later. We can then define
the cascade multiplicative factor Wt, t, for any arbitrary
pair of length scales (Zt82, Zi ) 42):

Et = 14', t Ft, , ln( Wt", t, ) = rp (lnl2 —Int) ) (3)
(this does not imply that 14'z, z, = et, /ez, ) Consid. er
an infinitesimal change of the length scale 6 = lnS]—
Inl2 ~ 0 . Assume Wq, t, = Wq has two events. The
first takes a value nz = (8&/42)r = exp(y6) ) 1, and

y = O(1), characterizing the rate of the amplification of
the dissipation event ee, , is assumed positive. This am-
plification leads to a singularity with a rate of divergence

where Ae, e, ~ 1nZ~ —1ntq is the mean. Over the range
the events of m-modulation defects correspond

to a multiplication factor 14', t, = P nq = P exp y;
therefore, 1',t, has a log-Poisson distribution. The
quantized structure here is that ln Wt, z, always contains
an integer number of quanta: m lnP.

The effect of a modulation defect is to reduce the
fluctuation of the dissipation, when going from large to
small scales. It is observed from numerical studies of the
Navier-Stokes turbulence [18] that small amplitude fluc-
tuation events are very disordered and random, while high
amplitude fluctuation events show remarkable coherence.
The above cascade picture suggests that small-scale disor-
dered eddies are generated from large-scale structures via
a quantized (discrete) process which involves multiple oc-
currence of modulation defects. Each modulation defect
makes a finite contribution to the destruction of the coher-
ence of an ideal singular structure.

We now show that this simple log-Poisson process for
1',t, gives rise to the SL scaling laws [1]. Let Wt, t, =
(Zt/82)r p, where y, p are constants, and X is a Poisson
random variable with mean Ae, e, . A straightforward
calculation shows that

InF Wq, t, = p Inne, e, + At, t, (PP 1)

Taking into account the continuity constraint F. 1t]tt, t, = 1,
we get At, t, = —y(lnZ) /Z2)/(P —1), and obtain

PP —I)
InE14~", t, = p — Innt, t,

Taking y = 2/3 and P = 2/3, we obtain the result of She
and Leveque [1]. It can be further shown that

~(P+)) 14'(P)P ) —P
e, e,

where 14', t, is defined similarly as er and 14', z,
= a.(p) (p) (oo)

This establishes the validity of Eq. (1).
In the SL scaling model [1],the parameters y and P can

be explicitly related to the properties of the most singular
structures in turbulence, and can thus be estimated based
on physical consideration. The rate of the divergence of
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the most singular structure is y which is related to p
and D, the "dimension" of the level set et, see [1] for
the definitions of level sets and the parameter D . From
Eq. (5) and the definition of y, we obtain

r„= —yp + (d —D-)(1 —P"),
with p = 1 —y/(d —D ); here d is the dimension of
the space. It is clear that 0 ~ p ~ 1; it follows that
0 ~ y ~ d —D . For p = 2/3, we have an interesting
relation: y = (d —D )/3. Recently, Benzi [19] shows
that p = 2/3 also gives an approximate description of
the scaling laws in the shell model of fully developed
turbulence, with a different D . It suggests that D as a
characterization of the most singular structures is system
dependent, but p may be constant in a wider universality
class; see more discussions below.

Over a finite range of scales, a quantized cascade
provides a log-Poisson process containing an infinite
number of discrete values for the multipliers, or in
probabilistic terms, an infinite number of atoms. This is
in strong contrast to previously proposed discrete cascade
models which contain a finite number of atoms. For
example, the u model [9,11] and p model [12] contain
two atoms, and the random p model [10] contains three
atoms. The log-Poisson model realizes a very important
property of the random multiplicative process, the log-
infinite divisibility, which none of the models with a
finite number of finite atoms possess. The p model
[20] is log-infinitely divisible because it has an infinite
atom at In''t, t, = —~. In general, in view of the log-
infinite divisibility requirement, any cascade models based
on a finitely many finite atoms cannot represent such
a continuous scaling process as the inertial range of
turbulence.

The assumption of the existence of a random multi-
plicative process for the inertial-range dynamics is key to
the present analysis and needs more discussion here. We
conjecture that it is achieved because of the strongly non-
linear coupling. An intuitive argument goes as follows:
The statistical states of fluctuations at inertial-range scales
are linked exclusively by nonlinear couplings through
which all (phase) information propagates. At the station-
ary state, mixing of the phase information is abundant,
because a large number of dynamic degrees of freedom
participate in the dynamics, rendering extremely chaotic
motions. Hence, the multiplicative links between large
and small eddies may become statistically independent
of the property of the particular eddies concerned, and
the independence holds irrespective of the relative size
of the two eddies. A necessary condition for its exis-
tence is obtained from Eqs. (3), which formally define
Wq, t, through the inverse Laplace transform. Because
the left-hand side (l.h.s.) of (3) is a convex function and
In(12/Z~) ( 0, „rsmt bue a concave function of p. Ex-
perimentally observed ~~ is indeed a concave function of
p. The concavity of r„rules out, however, a similar

random multiplicative description in the opposite direc-
tion for, e.g. , et, = Wq, t, et, . As we switch 8~ and Z2,

In(42/Z~) changes sign, and the r.h.s. of (3) changes from
a convex to a concave function, and this is in contradic-
tion with the convexity of the l.h.s. of (3). This suggests
that, if given a cascade interpretation of the multiplicative
process, the concavity of 7.

~ prescribes the direction of the
cascade; see Gupta and Waymire [21] for a further discus-
sion in another context. Physically, the concavity of r„
is a result of the breaking of the time-reversal symmetry
in the Navier-Stokes system. Indeed, the inviscid (Euler)
equation is invariant under the time reversal transforma-
tion (t t, u — —u), which reverses the direction of
the mean energy Aux. Only the viscous dissipation breaks
this symmetry, so that the forward energy cascade dynam-
ics (to small scales) are not governed by the same equa-
tion as the backward energy cascade, which, we believe,
is the origin of the concavity of ~p. Further theoretical
study on this point will be of interest to pursue.

If a random multiplicative process prevails, then there
is a random multiplicative factor for any pair of length
scales (Z~, Z2), since turbulent inertial-range dynamics is a
continuous scaling process. The usual notion of cascade
"steps" should be regarded merely as a convenient way
to describe a process which must eventually be taken to
some continuous limit to arrive at the description over a
continuum of scales. It follows that one can insert an
arbitrary number of length scales between 4] and f2, and
write 14', t, as a product of many W's which are all
defined similarly by a relation like (3). In other words,
ln Wt, t, can be written as a sum of many independent
ln14's. Furthermore, by the definition (3), the statistical
distribution of ]tlat, t, depends on scales Z~, Zq only through
the ratio 82/8~. This is a translational symmetry lnt ~
Inl + InA, implying that all of the inserted ln lV factors
have the same distribution. Therefore, Inst, t, must
be an infinitely divisible random variable, and the log-
generator process is a process with stationary independent
increments (in Inl), a property for infinitely divisible
processes, see Bhattacharya and Waymire [22].

The distribution of an infinitely divisible process is
completely determined by a possible continuous (i.e., no
jumps) Gaussian (Brownian motion) contribution with
dispersion parameter o.2, and by a limiting sum of in-
dependent compound Poisson processes and an attendent
Poisson parameter and a Levy-Khinchine measure K gov-
erning the average size of jumps; see Bhattacharya and
Waymire [22] for an explanation. This provides a repre-
sentation of ~„of the following form (when it exists):

2 co

mp+ p + — e ~" —1+
2 K(dy).

2 + y2

Included in this representation are the stable processes
with exponent 0 ( s ~ 2 and the gamma process, for
example, with an appropriate measure K(dy). With the
exception of the Gaussian case, the moment generating
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function, hence 7.
p is not convergent for all values of

p for these examples. This may be used as a basis to
rule out such examples. The quadratic term is due to
the Gaussian part of the representation, but for o- ) 0
the Novikov inequalities [13]are violated at large enough
p. Because of this inequality, the log-stable distributions
such as those considered in [8] with s = 1.65 can also be
ruled out.

If we assume that the jump measure K is atomic,
and contains a single atom yo, then we immediately ob-
tain the log-Poisson model described above with IC(dy) =
28 l„p(dy), (yo = —lnP). Thus, from the viewpoint of
the above general theory, the SL scaling law corresponds
to a case in which there is only one singular structure

(y = 2i3 for filaments) and one quanta (P = 2/3). This
distinguishes the 3D incompressible Navier-Stokes turbu-
lence from other nonlinear dissipative systems. It may
be possible in some systems to have multiple singu-
lar structures, with multiple modulation defects associ-
ated with their own dynamics: (7 ', p ' ), (7 2, p 2)), etc.
Then, a compound Poisson statistic will arise, instead of a
simple Poisson process. This raises an issue about the
universality classes of general nonlinear dissipative sys-
tems. A proper definition of the universality class may
be the number of singular structure and their associated
quanta (modulation defect). Then, systems even having
different scaling exponents (such as the shell model with
different hyperviscosities [23], or the wall-bounded turbu-
lence at different distance from the wall, or anisotropic
turbulence with various degrees of anisotropy at large
scales) may still belong to the same universality class. On
the other hand, systems such as compressible turbulence
may contain multiple structures (filaments and sheets) and
multiple quanta (associated with the dynamics of both the
solenoidal part and compressible part) and may belong to
a different universality class. The existence of the variety
of possible scenarios for the scaling behavior of nonlinear
dissipative systems, as seen from the Levy-Khinchine rep-
resentation, is one of the interesting and concrete results
of the present work, which will require both further theo-
retical investigations and experimental verifications. The
mathematical foundations largely concern discrete scale
cascades, e.g. , [24,25], although Kahane's T-martingale
theory also permits certain notions of continuous scale.
Finally, we add that a deductive link between the proba-
bilistic description provided here and the nonlinear PDE
describing the dissipative dynamics is still lacking. Many
interesting challenges are yet ahead.
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Note added. —After completion of this work, we re-
ceived a preprint [26] by Dubrulle devoted to similar top-
ics in which she also observes that the law of Ref. [1]
amounts to a log-Poisson distribution.


