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Two-Dimensional Crystals and Quasicrystals in Nonlinear Optics
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We report the observation of two-dimensional periodic and quasiperiodic structures in the transverse
profile of an optical beam circulating in a loop which contains a nonlinear medium. The symmetries of
the patterns are imposed by an image rotation within the loop. We propose a simple model which shows
the existence of two unstable bands of transverse wave vectors. Close to threshold, the predictions of
the model are qualitatively and quantitatively confirmed by the experiment.

PACS numbers: 42.50.Lc, 05.45.+b

Until now, the study of pattern formation in dissipative
systems has been concerned mainly with the two oppo-
site limits of spatially periodic or spatially disordered
structures [1]. Only recently a theory of two-dimensional
quasiperiodic patterns in nonequilibrium systems
has been offered [2], and fluid dynamics experiments of
parametrically excited surface waves [3] have confirmed
the existence of dynamic structures with quasicrystalline
properties [4]. Another example of two-dimensional
quasicrystals is given by the quasisymmetrical tiling of
the phase space for a particle moving in a magnetic
field [5].

In this Letter we report the first experimental evi-
dence of the formation of two-dimensional crystal-like and
quasicrystal-like structures in the transverse profile of an
optical beam. These patterns are generated by the su-

perposition of X = 2, 3, 4, . . . pairs of oppositely directed
wave vectors; they display an N-fold symmetry and are
characterized by a long range orientational order and self-
similarity properties. However, except for the cases X =
2, 3, 4, 6, they have quasiperiodic rather than periodic trans-
lational order, and thus they can be classified as quasicrys-
tals instead of crystals.

The experiment is based on the joint role of a Kerr non-
linearity and a light feedback [6]. It consists of injecting
an Ar+ laser beam in the front of a liquid crystal light
valve (LCLV) and feeding the reflected light on the back
after propagation. The LCLV is made of a mirror sand-
wiched between a nematic liquid-crystal (LC) layer in the
front and a photoconductive layer in the back [7]. An ac
voltage is applied across the two layers. The photocon-
ductor changes its resistance with the intensity of the light
incident on it, and the LC molecules reorient accordingly,
modifying their refractive index. Thus, a phase modula-
tion, proportional to the intensity distribution on the back,
is induced on the beam reflected from the front. The re-
flected light travels in a loop delimited by a beam splitter,
a mirror, and a fiber bundle, and including a free propa-
gation length I where diffraction takes place. The role
of diffraction is to convert phase into amplitude modula-
tion which is then converted again into phase modulation
by the LCLV. This feedback mechanism can destabilize

the homogeneous state, giving rise to transverse patterns
in the light intensity distribution. At the linear stage a
circle of critical transverse wave vectors ~q~ becomes si-
multaneously unstable. Close to threshold, the pattern is
determined by nonlinear interactions among wave vectors
on this circle, which has a radius q~ = v 7r ko/L for a focus-
ing medium and q» = $3~ko/L for a defocusing medium

[8], ko = 2'/A being the optical wave number.
The free end of the fiber bundle is mounted on a

rotation stage which allows for a continuous angular
positioning over a full 360' range with a high resolution
(readout to 0.2'). This way, the feedback image arriving
at the photoconductive layer of the LCLV can be rotated
to any angle A. It was shown theoretically [6] and
experimentally [9—11] that for 6 = 0 only hexagons
are stable [8]. On the other hand, for 6 = 7r it was
shown that only rolls are stable and that a competition
between hexagons and rolls can be achieved by inserting
an attenuation filter in front of one-half of the LCLV [11].

Initially, we fix the input intensity Io = 4.5 mW/cm,
the rms amplitude (40 V) and frequency (9 kHz) of
the voltage applied and the free propagation length
L = 75 cm, and change the rotation angle 5 in the feed-
back loop. When the rotation angle is exactly commensu-
rate to 27r, that is, when b, = 27r/N with N = 2, 3, 4, . . .,
a pattern with an N-fold symmetry develops. The symme-
try is induced by the rotation angle in the feedback, and it
is not due to boundary effects that arise when the system
is strongly limited in its transverse extension [12,13].

In Fig. 1(a) we report different near-field patterns, ob-
tained by imaging on a change coupled device (CCD) cam-
era the front of the LCLV, for various rotation angles
5 = 2~/N, where N is changed from 2 to 9. Since the
critical wavelength is of the order of 1 mm and the LCLV
has a diameter of 3 cm, a central region with negligible
boundary influences has been observed up to N of the or-
der of 20. Looking at the edge, it can be seen that away
from the center the system tends to stabilize rolls for N
even and hexagons for N odd. In fact, the feedback rota-
tion constraint is more efficient close to the center, whereas
at the edge the patterns recover the two basic symmetries
corresponding to 5 = 0 (N odd) and 6 = 7r (N even) [11].
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FIG. l. Experimental patterns observed for feedback rotation angles 5 = 2m. /1V. The N values are indicated close to each frame.
(a) Near-field patterns. (b) Far-field patterns; all frames correspond to the same magnification, thus the rings with N even and those
with N odd are, respectively, proportional to q& and q«.

The far-field patterns [Fig. 1(b)], collected on the focus
of a lens, are the power spectra of the corresponding near-
field images and provide directly the number of modes
involved in the pattern formation and the length of the
critical wave vector (radius of the ring where the peaks
are located). The patterns on the first and second column
(respectively, N even and odd) have different lengths
of the critical wave vector. Taking into account the
optical magnification of the system, we measure q» =
l2.5 mm ' for N odd and q] = 7.3 mm ' for N even, so
that the ratio qii/qi is close to ~3, in agreement with the
critical wave numbers ratio of a defocusing to a focusing
medium [8]. Indeed, even though the LCLV acts as a
defocusing medium, also an instability with the q& of a
focusing medium can be excited, as shown in Ref. [11].
The fact that for any pattern each q component contributes
as a pair of opposite directions gives rise to 2N peaks for
N odd, but only to N peaks for N even.

A linear stability analysis explains the presence of
two different critical wave vectors when a rotation is
introduced in the feedback path. Starting from the model
of a Kerr slice feedback [6,8], we modify the equation for
the refractive-index modulation n induced in the material

in the following way:

&II + n + j V n = gR[I(r, 0)],—

where the time has been normalized to the response
time of the LCLV, lD is the material diffusion length,
and g ) 0 (defocusing medium) is the strength of the
nonlinearity. I(r, 9) is the feedback intensity, (r, 0) are
the transverse polar coordinates, and R is the rotation
operator R[I(r, 8)] = I(r, 8 + 6).

Since the response time of the LCLV is a few ms
while the round-trip time is a few ns, the field can be
considered at any instant in equilibrium with the material
perturbations. Thus Eq. (1) has to be coupled with the
stationary field propagation within the material, where the
field acquires a phase factor e '" and over the length
L, which is accounted for by the phase operator [8]
e '(LI k')v . Therefore the right-hand side of Eq. (1) is
written in operator form as

(2)

Notice that for L = 0 (no free propagation) this reduces to
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mary peaks. These values indeed correspond to minima of
higher stability bands, and thus they are slightly different
from the ideal values 1.618. . . and 2 [4]. Further details
on the nonlinear regime will be reported elsewhere.

We acknowledge F. Papoff for fruitful discussions.
This work has been partially supported by the EEC-Esprit
Basic Research action TONICS (Contract No. 7118).

FIG. 4. Far-field patterns in the nonlinear regime (input
intensity 5 times above threshold). To avoid saturation, the
central region has been filtered out. In case (a), (N = 4) there
is evidence of nonlinear peaks arranged on a periodic lattice.
In case (b), (N = 5) secondary and tertiary peaks correspond
to wave numbers close, respectively, to Q7/3 and Ql1/3 times
that (q&&) of the main peaks.

the first one. Since the transition is not sharp and there are
intermediate situations in which both wavelengths coexist,
the NT measured this way has an error bar ~2. Repeating
the operation for various lengths L, we plot NT vs L. The
experimental data (Fig. 3) are fitted with a line resulting
from Eq. (6) with lo as a free parameter. The best fit
provides ID = 15.5 p, m. The inset of Fig. 3 shows the
experimental far-field patterns at L = 30 cm and N = 8
and 9. In the odd case, since the pair of complex roots
closest to the real axis provides a lower threshold at qi, we
have the same radius as for the even case; however, the
imaginary parts of the eigenvalues add a rotation in time,
and hence the peaks are not resolved.

The quasiperiodicity in the far field patterns is already
provided by the leading components with equal moduli
[Fig. 1(b)] whenever the projections of two successive
wave vectors are irrational on any symmetry axis, that is,
for N = 5, 7, 8, 9, . . . [3]. The nonlinearity of the medium
should also provide combination peaks. Indeed, far above
threshold, we observe further peaks which lie either on a
regularly spaced or on a self-similar lattice (Fig. 4), de-
pending on whether they refer to a periodic or quasiperi-
odic structure. For N = 5, the secondary and tertiary
peaks are located close to Q7/3 and $11/3 times the pri-
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