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Pair Susceptibilities and Gap Equations in Non-Fermi Liquids
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The pair susceptibility and superconducting gap equation are obtained when a branch-cut spectrum,
with either spin-charge separation or an anomalous Fermi surface exponent @ > 0 is introduced for the
normal state. For k-nondiagonal pairing interactions, spin-charge separation leads to an enhancement
of T, and A,(0) compared to a Fermi liquid. For a > 0, a critical coupling is required for a solution.
For spin-charge separation or 0 < a < % an arbitrarily small k-diagonal contribution to the pairing
interaction still leads to a solution, as in a Fermi liquid.

PACS numbers: 74.20.Mn

Finding a theoretical foundation for novel non-Fermi-
liquid metallic ground states in higher-dimensional (D >
1) strongly correlated fermion systems has been a subject
of intense research and much controversy over the last
few years, following suggestions that the normal state of
the high-T, cuprates is an unconventional metal [1,2]. A
corollary problem of interest in that context is to what ex-
tent the superconducting properties are affected by such
an unconventional normal ground state, and indeed if
the high 7. itself is a consequence of just this. Re-
cently, a superconducting gap equation resulting from the
Josephson pair tunneling mechanism of high-7,. cuprate
superconductivity [3] was considered in some detail [4].
These investigations relied on two nontrivial assumptions.
(i) In the normal state, Fermi liquid theory was postulated
to have broken down as a result of strong correlations,
leading to quenched, or at least incoherent, single-particle
tunneling between closely coupled CuO, layers. (ii) In
explicit calculations, the non-Fermi-liquid aspect was as-
sumed to manifest itself only through the quenching of
the coherent single-particle tunneling between layers, and
the dominance of coherent pair tunneling in the interlayer
coupling: The pair susceptibility of each individual layer
was taken to be of Fermi liquid form.

Assumption (i) has been reexamined and further justi-
fied [5,6]. To provide such a justification, it is crucial to
allow for the fact that, in the normal state at low energies,
the spectral weight of the fermionic two-point correlation
function satisfies a non-Fermi-liquid homogeneity relation
close to the Fermi surface [4], given by

A(Ak, Aw) = AT Ak, w), N

with an exponent @« > 0. A Fermi liquid has a = 0.
The fact that a finite deviation from Fermi liquid the-
ory appears to be required to justify the assumption of
quenched or incoherent single-particle tunneling between
layers raises a question about the validity of the assump-
tion made in point (ii) in calculating the intralayer pair
susceptibility. In this Letter, we reconsider this prob-
lem using explicitly non-Fermi-liquid normal propagators.
The breakdown of the Fermi liquid theory and the es-
tablishment of a novel fixed-line theory characterized by
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one single nonuniversal exponent is a highly nontrivial
assumption. At present, providing a rigorous foundation
for this for D > 1 remains a formidable challenge in con-
densed matter theory. Nonetheless, it appears to be of
interest to investigate what the consequences for super-
conductivity at the mean-field level in higher dimensions
are, given such an assumption.

Our starting point is therefore the single-particle fermion
propagator for the normal state, assumed to be given by

1

w& [o — u k]2 [w — up k2=’ @
which defines the anomalous Fermi surface exponent «,
with a corresponding expression for the hole propaga-
tor G,u(k,w). u, and u, are the velocities for charge-
and spin-density excitations, respectively, and w. is a
frequency cutoff which is introduced to make the Green’s
function dimensionally correct. Physically, we may view
w. as an energy cutoff (some fraction of the width of the
band crossing the Fermi level) beyond which the above
non-Fermi-liquid framework, being an assumed asymptoti-
cally correct low-energy description of the normal state,
becomes inapplicable. The above normal-state propaga-
tor may be viewed as an ad hoc generalization to higher
dimensions of a fermion propagator in a 1D interacting
system [7]. Note that the detailed form of Eq. (2) is not
identical to the forms of Ref. [7]. Equation (2) is purely
phenomenological in character, and there is no reason to
employ identically the structure of purely 1D objects [8].
Equation (2) has the basic property of lacking poles, i.e.,
there are no low-energy quasiparticle excitations in the nor-
mal state. It is the consequence of this phenomenology we
wish to investigate. For a Fermi liquid we have, in addi-
tion to @ = 0, also u, = u, = vy, where vy is the Fermi
velocity.

We now write the finite temperature 2 X 2 Green’s
function in Nambu-Gor’kov matrix formulation for the
superconducting state as

-1 . _ Gk, iw,)
G (k,iw,) ( —Ay Gnhl(k,i(l)n))’ 3)
where w, = 2n + )7w/B; B = 1/kpT, and Ak ~
(ck,jc-x,) is the mean-field gap, to be determined

Gk, w) =

—Af

© 1995 The American Physical Society 2575



VOLUME 74, NUMBER 13

PHYSICAL REVIEW LETTERS

27 MARCH 1995

self-consistently. Given the inverse matrix propaga-
tor G'(k,iw,), we define the anomalous propagators
F(k,iw,) and F'(k,iw,) in the usual way as the off-
diagonal elements of [G7!'(k,iw,)]"!. The gap equation
is then given by the self-consistency condition

1 .
Ay = — Z Vi FK' iw,) = ka,k’XO(k/) Ay,
Koo g

1 1
xo(k) = _E Z 1/2 1/2-a )

wp (l)g'afo fp - Alz( '
which defines the pair susceptibility y((k), and where
fr = (iw,)? — (u,k)?. Note that Eq. (4) follows from
(i) the phenomenology of Eq. (2), and (ii) the use of the
Gor’kov equations. This gives a pair susceptibility which
is different from the 1D results, perhaps not unexpectedly
given our use of the Gor’kov equations.

We consider the simple case Viy = V,lexl, lex| <
wp, where wp is a frequency cutoff on the spectrum of
the bosons responsible for the attractive interaction. In
this Letter, we make the assumption that wp < w.. Now
the gap equation 0 = 7 = T, may be written in the form

% = 2];)100 de xole). 5)

Here A = VN,(0), and N,(0) is the normal state
Fermi level density of states. For the Fermi liquid
case, the Matsubara sum in Y, may be evalu-
ated explicitly at all temperatures to give the well-
known result yo(k) = tanh(BEy/2)/2Ex, where E, =

et + Af(, with the linearized spectrum ex = vrk
close to the Fermi surface. For 7 = 0, the inte-
grated susceptibility [3” de xo(e) ~ In(wp/Ak), and
A(0) ~ wpexp(—1/A). At T =T,, the inte-
grated  susceptibility  [;” de xo(e) ~ In(Bwp), and
T. ~ wpexp(—1/A). The gap equation can be satisfied
for an arbitrarily small coupling constant A > 0 by
exploiting the logarithmic divergence that develops in the
integrated susceptibility at (a) small A(0), T = 0, or (b)
small 7., A = 0.

We will in the following consider two further special
cases of Eq. (4). The first case is a quantum liquid with
assumed spin-charge separation and Fermi liquid scaling
[7]. The second case is a quantum liquid with assumed
spin-charge confinement and non-Fermi-liquid scaling [5].
As far as pair susceptibilities and gap equations are
concerned, the second case will be shown to exhibit more
drastic deviations from the Fermi liquid results than the
first. The details are as follows.

Case (i): a =0, u, > u,.—In this case, the pole
singularities. in the Green’s function are determined from
the condition [(iw,)? — (u,k)?]1"?[(iw,)? — (ugk)?]'/? —
A,z( = 0, with the solution

(iw,)? = EL = %[w + 2 + 4Aﬁ], ©)

where v+ = (u,k)* * (u,k)>. In addition, we have the
branch points at iw, = *u,k and iw, = *u,k. The
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poles give a Fermi-liquid-like contribution to xo(k), but
with modified residues, whereas the branch cuts give rise
to a novel non-Fermi-liquid contribution. We get for the
pair susceptibility

Al tanh(BEy/2) 4

xo(k) =
\Jv2 + 4A, Ex

upk
XEK) = ~ [ dx tanh(&)
T Jusk 2

x5 (k) ,

hghy

e+ ap P

op
where h, = /|x2 — (u,k)?|, and u, + u, = 2vr. The
T = 0 integrated pair susceptibility 2 [;” de xo(e) as a
function of Ay for various values of [u, — u,]/vr is
shown in Fig. 1. It increases monotonically as Ay is
reduced, and is enhanced over the Fermi liquid case given
by the solid line. Note that the enhancement is finite
for Ax # 0, even when u,/u, = 0, as is also seen from
Eq. (7) by inspection.

The cut contribution vanishes as u, — u,, whereas
the pole contribution reduces to the Fermi liquid re-
sult. The increase of the cut contribution as u, — u, in-
creases is seen to overcompensate the reduction of the
pole contribution. No critical value of the coupling con-
stant A is required for a solution for all 0 < T < T,,
and Ay (0) is enhanced over the Fermi liquid case. Spin-
charge separation essentially amounts to a renormaliza-
tion of the coupling constant (see below). Notice also
that the pair susceptibility on the Fermi surface at T = 0
diverges as Ay ', since spin-charge separation is not felt
at k = 0 (here measured with respect to kr). The diver-
gence of yo on the Fermi surface is thus precisely as in
a Fermi liquid. At T = 0, the Fermi liquid limit is ap-
proached smoothly as u, — u,. At T =T., u, > u,,
only the cut contribution survives. However, at 7 =
T., lim,, —,, x6"(e) reduces to the Fermi liquid result

=
g —
1

N
T

Integrated susceptibility

Afwy

FIG. 1. The integrated pair susceptibility 2 [y de xo(e) at
T = 0 for case (i) as a function of Ay, for various values
of [u, — u,]/vp, when u, + u, = 2vp. The solid line is the
Fermi liquid result.
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tanh(Be/2)/2e, whereas the pole contribution has van-
ished. On the other hand, at u, = u,, limr_r, X(';Ole(e)
also reduces to tanh(Be/2)/2e, whereas the cut contri-
bution has vanished. Hence, for the total susceptibil-
ity lim,,—,,, limy—r, xo(e) = limy—r, lim,,—.,, xo(e), even
though this is not true for either of its two contributions.
The limit u, — u,, is thus nonsingular for the quantity T..

We next obtain T, for u, > u,. Only the cut contribu-
tion to yo(e) needs to be considered. Using Egs. (5) and

(7), we get
1 B 1 Bwp/2 . u(T)
T j; dx x H(x, “, s
! tanh(xu)
H(x; )Ej du . ®)
K N (e T

For x <1, we have H(x;n)= a7x/2, while
limy—o H(x; ) = K(‘/I — 172), where K (k) is a complete
elliptic integral of the first kind with module & [9].
Since H(x;n) saturates as x — oo, the integral over x
diverges ~In(Bwp/2) as B — =, as for the case u, = u,.
Because of the innocuous prefactor, the right-hand side
(RHS) of Eq. (8) can be made arbitrarily large by making
B large enough, and it therefore suffices to consider only

the asymptotic value of H(x;7n) as x — . By partial
integration, we obtain when Bwp > 1
LM ey
27 T 2 ’

We thus get kzT. = [wp/2] exp(—1/A), where A =
[2A/7]1K (/1 — u2 /u2), which has the same form as for
the Fermi liquid case. Spin-charge separation essentially
merely leads to a renormalization of the coupling con-
stant, as anticipated above (the difference in prefactor
is not essential). The increase of the effective coupling
constant compared to the Fermi liquid case is because of
the overcompensation, in the integrated susceptibility, of
the loss from the pole contribution by the increase of the
cut contribution as u, — u, increases. When u, = u,,
we have A = [2A/7]K(0) = A. On the other hand, when
uy/u, < 1, we have A = [2A/7r] In(4u, /u,). From the
above, both Ax(0) and 7. are seen to be enhanced by
spin-charge separation. An enhancement of the upper
critical magnetic field H.,(0) for this case, consistent with
the above, has recently also been reported [10].

Case (ii): « > 0, u, = u,.—The pole singularities in
the Green’s function below 7T, are now determined from
the condition [(iw,)? — ez]' " *w2® — |Ag|> = 0, with the
general solution [5]

(fwn)? = &2 + exp( 2imn )|Z\k|2, (10)

l -«
where n = 0,*1,..., and |Ax|l = |Ak] (Akl/we)®/E—),
In the extreme limit @ = 1, the effective gap Ay collapses
even if the bare gap Ax > 0. As will be shown below, it
turns out that the bare gap Ak (0) may vanish for a < 1.

This collapse reflects the smeared momentum distribution
at the Fermi surface as « increases; equivalently it is a
manifestation of the reactive nature of the coupling Vi k/
to a quantum liquid with non-Fermi-liquid scaling.

The superconducting propagator in this case has an
infinite number of poles located in the plane z? on a
circle of radius [Ay|?> around the point (k). However,
as emphasized in Ref. [5], the only physically relevant
solution is the one on the principal Riemann sheet
z = |z| exp(if); 6 € [0,27), which implies that iw, =
+[ez + |Ak|*]"/2 = *Ey. In addition to poles, the propa-
gator in the superconducting state is seen to have branch
points at *ex. As in the previous case, we thus get a
Fermi-liquid-like pole contribution to the susceptibility,
but with a modified residue, as well as a non-Fermi-liquid-
like cut contribution to the pair susceptibility. We obtain

A 2a
oK) = (Iiﬂ) 1 _1 - tanh(zlsz/z)

1 K «
x$ik) = — f dx tanh(ﬂ) 8s
@ Jo

2 ) 0282 + 82)°
(1)
where g0 = gaSiN(7ma@), gea = gaCOS(TA), Zea =
Zea + |AK[*1~®) and g, = |x2 — ef|'~*. Note that the
cut contribution is nonsingular at Ay, = 0 for all @ and
0=T =T, The T =0 integrated pair susceptibility
2 [4” de xo(e) is shown in Fig. 2 as a function of Ay, for
various values of a. The Fermi liquid result @ = 0 is
given by the solid line. Note the finite value at Ay = 0
for @ > 0. The logarithmic divergence for @« = 0 as
Ax — 0 is thus replaced by a finite value due to the modi-
fied residue of the pole contribution and the nonsingular
cut contribution. Comparing with Eq. (5), we conclude
that a critical value of the coupling constant A is required

for a solution to the gap equation for all 0 < T < T.,.

+ x0" (k),

Integrated susceptibility

FIG. 2. The integrated pair susceptibility 2 J5P de xo(e) at
T = 0 for case (ii) as a function of Ay, for various values of «,
with w, = 5wp. The solid line is the Fermi liquid result.
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As a — 0, the cut contribution vanishes, whereas the
pole contribution to the pairing susceptibility reduces to
the Fermi liquid result. The pole contribution is reduced
as « increases, whereas the cut contribution increases up
to a = % However, at small values of Ay, the increase
in the cut contribution is not sufficient to compensate
the reduction of the pole contribution as « increases. At
T = 0, a = 0, the pair susceptibility diverges as Ax' on
the Fermi surface, leading to a logarithmic divergence
of the integrated susceptibility as Ay — 0. For a > 0,
the cut contribution vanishes on the Fermi surface, and
the pair susceptibility diverges as Ai*~'. At T = 0, the
Fermi liquid limit is approached smoothly as @« — 0. At
T = T., a > 0, only the cut contribution survives. There
is an important difference here compared to the previous
case: limy—olimr_yz, xo(e) # limr—z, lima,—o xo(e). The
limit @ — 0 is thus singular for the quantity 7.

We next obtain 7., for @ > 0. This has previously
been treated less explicitly by a scaling approach [11].
Again, only the cut contribution to yo(e) needs to be
considered. Using Egs. (5) and (11), we get

1 2 2a Bwp/2
o <Bw ) fo dx x> 'F(x; a),

1
F(x;a) Ejo du—(ltfiﬂ;(:)u?),w

Here A = Asin(7a)/7. For x < 1, we have F(x;a) =
x/2a, while lim,_ F(x;a) = B(%,a)/2 — 1/x, where
B(x,y) is the beta function [9]. Since F(x; ) saturates as
x — o, the integral over x diverges ~(Bwp)** as 8 — oo,
The prefactor however implies that the RHS of Eq. (12)
cannot be made arbitrarily large by making B large
enough. A critical coupling constant A is thus required
for a solution, as for Ag(0). By partial integration, we
obtain when Bwp > 1
1

(12)

1 &
e pon Y
where the critical coupling now is found explicitly
Ao =2a(w./wp)**/B(3; @), and g(a)="2wp/w)*/a.
The RHS of Eq.(13) is a monotonically in-
creasing function of B. When A > A., we have
kgT. = [wp/g(a)][1/A, — 1/A], which should be
compared to T, ~ exp(—1/A) for @ = 0. Note that
lima_,() XC = Q.

The discussion has so far been carried out for a
pairing interaction which is nonlocal (nondiagonal) in k
space; cf. our choice of Vi below Eq. (4). We next
consider the effect of including a local, in k space,
pairing interaction. Such a local pairing interaction has
recently been considered in the context of an interlayer
tunneling mechanism of high-7, superconductivity [4].
Specifically, we consider the modified gap equation for
close superconducting bilayers coupled by a coherent
pair-tunneling term with matrix element 7. It is readily
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shown that this leads to an effective renormalization of
the pair susceptibility y, because of the local contribution
to the pairing kernel [4]. Equation (5) is now replaced
by [4]

1 wp
— = 2[ de—X0 (14)
A 0 1 —T;xo

For dominant 7, the instability at 7 = 0 may be deter-
mined from the condition 1 = T xo(e), with xg evaluated
on the Fermi surface [4]. For the Fermi liquid case, this
gives Ax(0) = T,/2.

For case (i), we find, using Eq. (7), Ax(0) = T,/2,
i.e.,, a result precisely as for the Fermi liquid case,
since spin-charge separation does not affect the spec-
trum on the Fermi surface. For case (ii) we find at
T =0, 1=[T,2w.(1 — a)]x?*7!; x =Ax/w.. As
long as @ < 3, one can obtain a solution for arbitrarily
small 7,. This is no longer guaranteed if o > % For
a < % using Ax = Ax(Ax/w.)*/0~® and Eq. (11), we
find  Ax(0) = (1/w)*/ 29T, /2(1 — @)]0- /072,
which approaches 7;/2 as a« — 0. The local contri-
bution to the pairing kernel thus to a certain extent
helps to preserve the structure of the solution to the
gap equation obtained from using a Fermi liquid form
of X0-
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