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Level Correlations Driven by Weak Localization in 2D Systems
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We consider the two-level correlation function in two-dimensional disordered systems. In the
nonergodic diffusive regime, at energy e ) E, (E, is the Thouless energy), it is shown to be completely
determined by the weak localization effects, thus being extremely sensitive to time reversal and spin
symmetry breaking: It decreases drastically in the presence of magnetic field or magnetic impurities
and changes its sign in the presence of a spin-orbit interaction. In contrast to this, the variance of the
levels number fluctuations is shown to be almost unaffected by the weak localization effects.
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A remarkable observation of Wigner and Dyson [1]was
the existence of universal statistics that govern energy level
spectra in a wide variety of quantum systems [2]. The
Wigner-Dyson statistics of eigenvalues in the invariant en-
sembles of random matrices are applicable also to disor-
dered electron systems in a metallic phase [3—6]. The level
repulsion, characteristic of these statistics, results from the
overlapping of one-electron states corresponding to differ-
ent energies. With the disorder increasing such systems
undergo the Anderson metal-insulator transition [7]. On
an insulator side of the transition, uncorrelated energy lev-
els are described by the Poisson statistics.

Recently, the existence of the third universal spectral
statistics, applicable to the disordered systems in a criti-
cal regime near the Anderson transition point, has been
predicted [8—11]. These statistics emerge [10] in the
crossover region near the transition, where electron diffu-
sion is anomalous and turn out to be completely new [9]
and different from the Poisson and Wigner-Dyson ones,
rather than a universal hybrid of both, as has been ear-
lier conjectured [8]. They are still characterized by the
level repulsion [11],albeit it is weaker than in the metal-
lic region. It is essential that nontrivial level correlations
[9,10] turn out to be driven by small scale-dependent cor
rections to the conductance which by itself is almost scale
independent near the Anderson transition.

The conductance has only a weak scale dependence
also in the case of a two-dimensional disordered system
in a weak-localization (WL) regime. There is no metal-
insulator transition at d = 2, and, with the size increasing,
such a system crosses over to a strong-localization regime
[12]. So one can expect some analogies between the level
correlations in this case and those in the critical regime
in the higher dimensionality. However, while the one-
parameter scaling hypothesis [12] was taken for granted to
make considerations in the critical regime possible [9,10],
the WL regime at d = 2 may be treated within a rigorous
and conjecture-free perturbative approach.

In this Letter we consider level correlations in a 2D
disordered electron system and show that they are totally
governed by the WL corrections to the conductance, when
the distance between the levels, e, is in the region

E, ~ e ~ fi/gr. (1)
This is another of a few known examples (as an anoma-
lous magnetoresistance or the Aharonov-Bohm effect [7])
where the weak-localization corrections determine the
main effect In Eq. (1.), E = A, Dp/Lp is the Thouless en-
ergy, Lp is the sample size, Dp = ZVF/2 is the diffusion
coefficient, 4 = vF ~ is the elastic scattering length, and g
is the conductance in units of e2/m. h.

We consider the two-level correlation function

(p(E) p(E + e)&

&p(E))(p(E + ~))
(2)

Here (. . ) denotes averaging over all the realizations, and

p(E) = pL "g~(E —~.) (3)

is an exact density of states for a particular realization of
disorder, where a„are exact energy levels and p is a spin
degeneracy. For E, F + e in the bulk of conduction band,
(p(E)) —= p is energy independent, and RF(e) —= R(e) is a
function of (e) only.

The averaging in Eq. (2) is performed within the impu-
rity diagrammatic technique [13]with p(E) represented by
(i p/7r L4) f ImG+(r, r; E) dr (here G- are exact retarded
or advanced one-particle Green's functions). It is conve-
nient to use a representation in which slow diffusion modes
are explicitly separated from fast "ballistic" ones [14,15].
In Fig. 1, there are shown the lowest order (one-loop) dia-
grams containing one or two diffusion or Cooperon prop-
agators (shown by wavy lines which correspond to the
ladder series in the conventional technique [5]). Trian-
gular and square "Hikami boxes" represent the motion at
the ballistic scale as all the averaged Green's functions
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(a) (b)

a main if not a vanishing coefficient) happens at the
mobility edge for d ) 2, although much more subtle
considerations were required [9]. On the face of it, what
is left at d = 2 is the contribution of the diagram of
Fig. 1(a) and the next order correction for the diagram
of Fig. 1(b) [arisen when the corrections to the boxes
~ (qZ)2 are taken into account]. It gives

FIG. 1. One-loop diagrams contributed to R(e). (er/6)2
27rPg6 1 + (er/fi, )2

(7)

G (r —r', e) (represented by edges of the boxes) decay as
e ' " ~. At the diffusion scale, these boxes are reduced
to certain constants (see Ref. [16]for review). Taking into
account the total number of Cooperon and diffuson contri-
butions that depends on the universality class, one obtains
for the one- and two-diffuson diagrams

R(i)(e) =
~ Pfi ~

(A, Dpq —ie) '

Q2 1
R(2)(e) = Re

m' P (fI,Dpq —ie) (4b)

where q = (2'/Lp) (n, n~), and n, ~ run over all the inte-
gers, P = 1, 2, or 4 is for the Dyson orthogonal, unitary,
and symplectic ensembles, respectively, and b, = p/pL"
is the mean level spacing.

The two-diffuson diagram of Fig. 1(b) is well known to
dominate at d ) 2 in the interval 6 ~ e ~ A, /r. Indeed,
in the ergodic region e (( E, where all the terms with

q 4 0 may be neglected in Eq. (4b), it gives

1 8
R(e) = —, , s—= —, (5)

which is the envelope of the Wigner-Dyson correlation
function. The contribution of the one-diffuson dia-
gram, Eq. (4a), is of order (l/Lp)" (lkF) ~(" ') in this
region, i.e., totally negligible. In the diffusive region
F., « e « fi,/r the summation in Eqs. (4) may be
changed by integration, and the two-diffuson diagram,
Eq. (4b), gives the well-known result [5]

This result corresponds to that obtained by Altland and
Gefen [17] who have thoroughly considered the level
correlations in the ballistic regime. (In their technique
both the diagrams of Fig. 1 were described by a single
expression so that no explicit cancellation has been seen. )
In the diffusive regime, it gives only a logarithmic
dependence on e with a small amplitude r 5/g fl, —
(I//, L,)'.

A surprising situation at d = 2 is that in a wide re-
gion, Eq. (1), the contribution of the one loop dia-grams,
Eq. (7), is small compared to that of the two loop d-ia

gram containing four propagators [Fig. 2(a)]. The shaded
Hikami box is ~ qz [15],so that this diagram describes the
WL correction to the diffusion coefficient Dp in Eqs. (4).
It contains a Cooperon, thus being absent in the P = 2
case where the next-order (three-loop) diagrams should
be considered. Therefore, to find the WL contribution to
the correlation function (2), we calculate the correction to
Dp, given for P = 1, 4 by

1

~fi(P —2) ~ q2

and substitute D = Dp + BD into the integral in Eq. (6).
Naturally, its real part would not change the zero result at

+2Ld
R() =

2 (2 )„Re

Cd

Pg / ~s~ /

(6Dpq2 —i e)~

(6)
(a)

Here the numerical coefficient Cd depends only on d.
For d ) 2, Eq. (6) makes the main contribution into

R(e), as that of the diagram of Fig. 1(a) turns out to be
smaller by (l/L, ) ", where L2 = flDp/e. It becomes
relevant for the correlation function (2) only at the
ballistic energy scale e —fl,/r, where the appropriate
diffusion length L, is of order 4 and the diffusion
approximation is no longer valid.

Ford = 2 such an estimation fails as C2 = 0 in Eq. (6).
A similar cancellation (of a contribution that would be

(b) (c)

FIG. 2. Two-loop diagrams contributed to R(e). The dia-
grams (b) and (c), which describe renormalization of the ef-
fective vertex, cancel each other. The diagram (a) yields the
WL correction to the diffusion coefficient.
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y(n) = pe " = 6'3(0, e ).
i ri(g, p) sgn(e)

ImBD e
4vrkp

(9)
The asymptotical values of p are given by

d = 2. So it is the imaginary part of the WL correction
that governs the level correlations in region (1). With the
same accuracy as in Eq. (6),

(1lb)

(1 1c)

1
Rg)(s) = Ref(s),~2pg2 (1 la)

f(s) = 1

n2 —is g2
ne"'«q '(n) dn,

Here 21(g, P) = (P —2) ' for P = 1, 4, and = —1/2g
for p = 2, where the above result is obtained with due
regard to the third-loop corrections, and thus contained an
additional factor of 1/g. Calculating the integral (6) with
allowance for the correction (9), we obtain

R~(~) = n(g. P) 1

p g' isi' (10)

There exist two more two-loop diagrams, Figs. 2(b) and
2(c) but they exactly cancel each other. It has been ex-
pected, as these diagrams would yield a singular correc-
tion to a renormalized triangular vertex of the diagram
of Fig. 1(b). The vertex has zero scaling dimensionality,
and should remain unrenormalized, as its renormalization
would violate the particle conservation law. Thus all the
vertex corrections must cancel each other, as has been
noted in Ref. [9] for the diagrams at the mobility edge.
The cancellation of the diagrams in Figs. 2(b) and 2(c)
provides a perturbative proof of the absence of the vertex
renormalization.

In region (1) this contribution dominates over that of
Eq. (7), provided that g & fi/E, r —(Lo/Z)2. (For p =
2, it dominates for E,a ~ 6/g2r, such region existing
for g ~ Lo/Z. ) This condition may be violated for
a very small or very pure sample which is almost
ballistic. In general, however, it is easily satisfied. The
two contributions are matching for a —fabri/gr, and the
latter becomes dominating for the higher energies, in
the "quasiballistic" region Ari/gr ~ a ~ fi/r There is, .

however, a parametric mismatching of the results of
Eqs. (5) and (10) at the boundary between the ergodic and
diffusive regimes e —E, where the ergodic expression,
Eq. (5), is of order —1/g while the diffusive one is of
order —I/g2 for p = 1, —1/g4 for p = 2, and +1/g3
for p = 4. The reason is that one can justify neglecting
all the q 4 0 terms in the sum (4b) only for e « E„
and changing summation by integration only for e » E, .
There exists some transient region near e —E, where
R(e) crosses over from the Wigner-Dyson behavior,
Eq. (5), to the WL behavior, Eq. (10). In this region one
should evaluate accurately the sum in Eq. (4b). Changing
there to the dimensionless variables n and s, and using
the transformation b 2 = fo ne "dn, one performs the
summation over n and nY in Eq. (4b) to obtain the result
in terms of the elliptic theta function [18] 03.

R(s) = Ref(s) +1

7r2P g2 s
(13)

Only for s ~ A, /grA, this contribution becomes smaller
than the quasiballistic one, Eq. (7), found in Ref. [17].

The two-level correlation function R(s) studied above
determines the variance X2 = ((N —N) ) of the number
of levels N in an energy strip of the given width E = NA
(here (N) —= N). Its derivative is given by

N

R(s) ds.
dN —p

(14)

In order to calculate the right hand side (r.h. s.) of
Eq. (14), it is convenient to use the representation of R(s)
in the form of a sum, as in Eq. (lib), and integrate first
over s. Then, neglecting the WL corrections, one obtains
forN » g

dip 2N ~ 1

dN ~'Pg' [(N/g) + (n ) ]
1

pg
(15)

so that X2 —N/g [5]. Allowing for the WL term, one
finds with the logarithmic accuracy

N 2g(g P) N

pg
(16)

As in the WL regime g 'ln(Lo/l) « 1, the variance /2
is almost linear in N in the whole region E, ( E =
NA & fi/r. Indeed, the WL logarithmic term in Eq. (16)
could be important only for N ~ geg. For E ~ A, /r, this
gives es ~ A/E, r —(Lo/l) while the , WL approach is
applicable in the opposite limit, g

' ln(LO/l) ~ 1.

( )
Qvr/n [1 + 2exp( —vr /n)], n « I, (12)
1 + 2e a »1.

For s « g, Eq. (lla) is thus reduced to the ergodic
result (5), while for s » g, Ref(s) ~ exp[ —~$2s/g].
Therefore, for large s using the accurate summation
instead of integration gives only the exponentially small
correction to the WL result of Eq. (10). [Note that with
the accuracy up to the same exponent, Imf(s) = m/s,
so that using the integration for calculating the WL
correction is justified. ] In the transient region of the width
eo = 2E, ln g, the contribution of Ref(s) is important
(and dominant for ~a —E, ~

&& eo), and it describes a
smooth and universal crossover from the Wigner-Dyson
to the WL regime in R(s).

Now we can combine the results in the ergodic region,
Eq. (5), the WL region, and the transient region described
above to represent them as
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Note that the N-independent result of Eq. (15) is only
valid in the diffusive region A, /(z. b) » N » g. For N ~
~ the integral in the r.h. s. of Eq. (14) must vanish.

The reason is that there exists a sum rule which follows
from the conservation of the total number of states 3V.
Multiplying Eq. (2) by (p(E + e)) and integrating over all
e with the identity L" f p(E + e) de = 2V, one obtains

+ QO

RF(e) (p(E + e)) de = R(s) ds = 0, (17)

where the second identity in Eq. (17) results from (p)
being a constant in the relevant interval e « e~.

By the derivation, the sum rule in Eq. (17) holds
exactly as long as the total number of states 3V is
finite. However, it may be violated if the thermodynamic
(TD) limit 3V ~ ~ were taken before the integration in
Eq. (17).

To illustrate this point let us consider an ensemble
of diagonal random 3V X 9f matrices. Suppose that
matrix elements x„are independent random variables
each having the same probability distribution: P(x) =
3V ' for ~x~ ( 3V/2 and P(x) = 0 otherwise. Using
the definitions (2) and (3), one immediately finds the
correlation function Ro(s) = 8(s) —3V '0(3V/2 —~s~),

where 0(x) is a step function. For finite 3V, Ro(s) obeys
the sum rule (17), since a positive contribution of the 6
function is canceled by a negative one given by the fIat
small "tail" in Ro(s). The universal Poisson distribution
Ro(s) = 6(s) arises only in the TD limit and obviously
does not obey the sum rule.

The above toy model illustrates what happens in
the present problem. The integral in Eq. (14) is really
vanishing in the limit N Go, as required by the sum
rule, due to the negative contribution (—P g)

' of the
long and small "ballistic" tail in R(s) given by Eq. (7)
for er/A, —1. If the TD limit Lo ~ ~ is taken in R(s)
this ballistic tail vanishes, and the sum rule breaks down.

A situation similar to the present 2D case takes place
at d ) 2 at the mobility edge where the sum rule for the
limiting function R(s) breaks down for the same reason.
Thus, in contrast to the statement made in Ref. [9], it
could not be applied to calculating the variance. This
leads to a linear in N term in the variance [19],missed in
Ref. [9],which is similar to that in Eq. (16). A difference
is that g —1 at the mobility edge so that the coefficient
of proportionality is just a certain number. The long-
range level correlations lead to the contribution to the
variance ~ N (7 is a universal critical exponent), so that
Xz = AN + BNr where A and B are contributed by all
the diagrams and thus cannot be exactly determined.

We conclude that in the diffusive region of Eq. (1) the
level correlations, Eq. (10), are totally governed by the

weak localization effects while the level number variance,
Eq. (16), is governed by the total conductance with the
WL effects resulting only in small corrections.
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