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Diamagnetic Response due to Localization in Chains of Connected Mesoscopic Rings
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A dynamic response to a magnetic field of a chain of connected mesoscopic rings is considered. We
show that the low frequency behavior corresponds to localization of the electrons along the chain and
to diamagnetic dynamic currents inside rings. The magnetization density due to these currents does not
vanish even in the limit of the infinitely long chain of strongly connected rings showing that this is a
macroscopic effect. Being of a dynamic origin the currents can be destroyed by inelastic scattering but
we And that their time of persistence is at low enough temperatures macroscopically large. Thus, this
may yield a new contactless method of studying the localization.

PACS numbers: 72.10.Bg, 05.30.Fk, 71.25.Mg, 75.20.En

The recent measurement of the magnetization of an ar-

ray of disconnected Cu rings [1]constituted the first detec-
tion of a thermodynamic mesoscopic effect and revealed
its dependence on the statistical ensemble. Considerable
effort was invested in a theory of the observed effect in
the diffusive regime where the circumference of a ring L
is larger than the elastic mean free path l. Averaging over
disorder at fixed Fermi energy gives an amplitude for the
persistent current which is exponentially small in L/l [2],
and it was suggested that a larger amplitude can be due to
the fixed number of particles in the rings [3]. However,
averaging over impurities in the canonical ensemble can
analytically only be done by a perturbation theory in fluc-
tuations of the chemical potential [3].

Alternatively, it was proposed that the averaged dynamic
response to the magnetic field is less sensitive to the sta-
tistical ensemble [4]. Levels in a closed ring as functions
of the external magnetic field do not intersect each other
and, before the averaging, the dynamic response must co-
incide in the limit co ~ 0, where co is the frequency, with
the corresponding thermodynamic derivative. Therefore,
in this case, one can hope that by calculating the dynamic
response with a fixed chemical potential at T = 0 K, as
was done in [4], one obtains a reasonable description of
the thermodynamic currents. Both methods give the same
order of magnitude of the persistent current in the diffusive
regime [4] and the same result in the quasiballistic regime
[5]. Although, possibly, not being exact, the dynamic ap-
proach can serve as a reasonable approximation scheme for
the calculation of thermodynamic quantities. In Ref. [6]
the possibility of a difference between the dynamic and
thermodynamic responses arising from the averaging over
the impurities was traced by considering a special experi-
mental setup.

In the system considered in this Letter the situation is
completely different. While level intersections are not
possible in an isolated ring, they can occur in a chain
of connected rings in the limit of L ~, where L
is the length of the chain. This is due to the fact that
all wave functions in a disordered quasi-one-dimensional

Md„„= N„VKd@ /4vrc, Kd = ne /m—.2

In Eq. (1) rn is the electron mass, e the electron charge, n

the electron density, c the light velocity, and V the volume
of a single ring. This magnetization does not correspond
to the free energy minimum and due to inelastic processes
decays to the smaller thermodynamic value which can
exceed the Landau diamagnetism, however [8].

The impurity averaged response to the time dependent
fiux P is calculated using the Kubo formula in the form
given in Ref. [4]. The frequency dependent magnetiza-
tion M is then obtained from the response function K(to)
as

M„= N„VRe[K(to)@ ]/4vrc (2)

It will be shown below that in the diffusive regime in
the absence of inelastic processes the dissipative part of
the magnetization vanishes in the zero frequency limit but
the real part of the response can remain finite. In the
limit of small frequency the diagrammatic technique leads

chain are localized and parts of the chain located far from
each other do not interfere. This leads to an exponential
suppression of the level repulsion. This is similar to
the situation in a disordered one-dimensional chain [7].
The resulting level intersections in the system cause the
dynamic response now to be completely different from
the thermodynamic one before averaging over impurities.
In fact, in the infinite system one cannot expect any
finite thermodynamic magnetization density except the
Landau diamagnetism which is small compared to the
effect considered here.

To understand better the nature of the dynamic response
we want to study in the diffusive regime, let us consider
first the corresponding clean limit. The chain of N„rings
is in the ballistic regime L ( l an ideal diamagnet, and its
magnetization due to an applied fiux P + @ through the
rings, where P is a small time dependent fiux, is given
by
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(..)g = (4)

The function W(Q) in Eq. (4) satisfies the equation
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to divergencies and one should use the supersymmetry
method [9].

The responses both along the chain of rings with cross
section S = V/L as well as in the azimuthal direction of
the rings can be reduced to a calculation of functional
integrals over supermatrices Q. Here, we want to calcu-
late the response in azimuthal direction of an ensemble
of chains of rings whose length exceeds the localization
length L, » L, » L. The dynamic response of discon-
nected mesoscopic rings was calculated in Ref. [4] us-
ing the zero-dimensional version of the cr model. In the
general case of an arbitrary hopping amplitude between
the rings one has to add in the free energy functional a
term describing the coupling between the rings. Such a
term is analogous to the Josephson coupling in the the-
ory of superconductivity [10,11]. Changing the probabil-
ity of tunneling from ring to ring we can describe thus the
crossover from the case of isolated rings to the homoge-
neously weakly disordered chain of rings. Then, the free
energy F(Q) is

F[g] = —g J;,STr(g;Q, ) + g Fo(g ),
lJ I

mvV e

8 c " )
STr —23p —A[g;, r3] ~

+ 2i cu A Q;

(3)

where i and j enumerate the rings in the chain, Dp is
the classical diffusion coefficient, A is the vector potential
due to the flux through the rings, and Q; = 1. The
notation STr stands for the supertrace. The definition
of the matrices ~3 and A as well as details of the
supersymmetry method can be found in previous works
[4,9]. The function Fo(Q, ) in Eqs. (3) stands for electron
motion inside the rings, while the first term in Eq. (3)
describes the coupling between the rings due to electron
hopping. The parameter J is related to the single electron
hopping amplitude t as 1 = vr V v t if the momentum
is not conserved by the hopping process. Only nearest
neighbors are coupled so that J;, = J for the neighbors,
and J;, = 0 otherwise. The limit 1 = 0 corresponds to
the chain of disconnected rings. In the limit J » 1 the
model on the lattice, Eq. (3), becomes the continuous one-
dimensional fr model [9]. Then, the coupling constant
J is related to the classical diffusion constant Dp as
J = rr v VDo/8L2.

Because of the one-dimensionality of the model Eq. (3)
one can use the transfer matrix technique. Correspond-
ing partial differential equations have been written in
Refs. [9,12] for the continuous 1D o. model. For the
model on the lattice, Eq. (3), the corresponding recurrence
equation is an integral one [10,11]. Repeating the main
steps of these works we reduce calculation of integrals
over Q; for all sites i to one integral over Q,

%(Q) = exp(2JSTrgg')e( 'l~ l'If(Q')dg'. (5)

The solution of Eq. (5) depends on the vector potential
A entering Fo, Eq. (3). In principle, it can be solved,
at least numerically, for arbitrary magnetic fields using
the parametrization proposed recently [13], but we will
present results only in the limits of zero and high
enough magnetic fields. These limits correspond to the
orthogonal and unitary ensembles. In both cases one can
omit the first term in Eq. (3) because in the unitary case
the supermatrix Q commutes with the matrix rq since the
time reversal symmetry is broken [9]. Because of the
symmetry of the free energy the function %(Q) depends
only on one compact real integration variable A and two
noncompact integration variables A~ 2 parametrizing the
supermatrix Q [9]. Therefore, in the functional integral
over Q one can integrate first over all other variables of
the representation of Q introduced in Ref. [9].

For the unitary ensemble, the time reversal symmetry
is broken and there is only one noncompact integration
variable A]. Corresponding calculations are not very
different from those performed in Ref. [4] and we obtain

1
K (co) = lcofro 1 +

2
(i m~/6 —6)(A l

—P)

X + (A, Ai)dAdAi

where K"(cu) is the response along the circumference of
the rings in the unitary ensemble, b, = (v V) ' is the mean
level spacing in one ring in the chain, o.o = e rn/m is the
Drude conductivity, and 6 0. There remains a finite
response after ensemble averaging, if at low frequencies co

the second term in the brackets in Eq. (6) is proportional
to I/cu. In the limit cu ~ 0 solving Eq. (5) becomes
more simple because the main contribution to the integral
over Ai comes from Ai —I/cu. Then, the function W(Q)
depends only on one variable z = 2~ A

&
and we obtain for

the response K(cu)

IC (M ~ 0) (Tokeff(J)/rr,

where the effective mean level spacing A, ff is a nontrivial
function of the coupling J between the rings,

P(J) ~ ff(J)/~

This function gives the probability that an electron does
not leave a ring forever and is known numerically for
arbitrary J [11]. Here, we have to remark that the order
in which the limits were taken, first taking the length of
the chain L to infinity and then performing the zero-
frequency limit, means that our results apply for chains
of finite length only if the frequency co is not smaller than
the mean level spacing of the chain b, o

= I/vSL, .
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At high frequencies the second term in Eq. (6) is
small and one obtains the classical response function
K(cu) = i o) op. We see from Eqs. (6) and (7) that
the characteristic frequency of the crossover from the
quantum to the classical regime is of the order of 5,ff.

In the limit J = 0 corresponding to disconnected rings,
W = 1 and b,,«(0) = b, . The magnetization of the chain
of disconnected rings is then, using Eq. (2),

M" (J = 0) = N„VKdrhg /47r c (9)

M~(J && 1) = [N„V/(8nMT) ]Kdp„/4nc, (10)

where Mr = kFS/47r is the number of transverse chan-
nels in a single ring.

Decreasing the coupling J makes the localization length
shorter which leads to a larger response. For intermediate
values J, the localization is an amalgam of weak localiza-
tion and the effect of the barriers between the rings and
the dependence on disorder is nontrivial.

The response K, Eq. (7), describes the dynamic mag-
netization per unit length along the chain and therefore
the total magnetization is proportional to the length of the
chain. It has been mentioned that the corresponding ther-
modynamic response is small as well as the difference be-
tween the canonical and grand canonical ensembles. To
make a more explicit estimate, one can use the expansion
in terms of fluctuations of the chemical potential [3,14]
and calculate the correlation functions entering the expan-
sion with the supersymmetry technique. It turns out that
the thermodynamic magnetization density of the chains
calculated in this approximation vanishes for macroscopi-
cally long chains [15].

As we found above, the dynamic magnetization is due
to the localization along the chain. As soon as the lo-
calization is lifted and electrons can travel through the
chain, the magnetization should vanish. At temperatures

In the opposite limit J » 1 the function 'P(z) is the
solution of the differential equation zd2'qt/dz2 —16J'qr =
0. Solving this equation and calculating the integral,
Eq. (8), we find that there is still a finite probability
P(J) = 1/96J that an electron stays in one ring. This is
a direct consequence of the localization of the electrons
along the chain. In the unitary ensemble the localization
length L, was calculated in Ref. [9] and can be related
to the coupling J as L, = 32JI., where we included an
additional factor 2 since the effective cross section of the
chain of rings is 25. Note that with an effective length
of a ring L/2 in the chain the inverse participation ratio
becomes I' = 2/3L, which is the weil known result in
the unitary ensemble. Here we obtain for the effective
level spacing A,«(J » 1) = (3vSL, ) '. Thus, we see
that in the limit of large J the response K"(0), Eq. (7),
looks as if the chain of N, rings consisted effectively of
L /3L, (J) rings. In this limit we obtain with Eq. (2) that
the magnetization does not depend on the disorder:

T & b,«and at frequencies cu smaller than t '(J), where
t(J) is a time due to inelastic processes, the dynamic mag-
netization decays due to a dc conductivity proportional to
t '(J), whereas at higher frequencies t(J) has no influ-
ence on this magnetization. The simplest way to include
the time t(J) into formulas obtained above is to substitute
~ ~ co + it '(J) in all expressions for K/cu, where K
can stand for the responses in both the longitudinal and
azimuthal directions. (K/co is proportional to the prod-
uct of two Green functions, and it is this quantity that is
calculated in the linear response theory. ) With this substi-
tution the magnetization would decay with time t(J). Of
course, this is a hypothesis and we suggest it to make a
rough estimate only. Concerning the longitudinal conduc-
tivity in the regime of the localization, it can be different
from zero due to hopping between the localization centers
[16]. Explicit calculations for disordered chains [17] at
not too low temperatures corresponding to T ) A, ff lead
to the result t(J) = r&h, where r~h is the electron-phonon
scattering time. To the best of our knowledge nobody has
performed analogous calculations for thick wires which
are equivalent to the chain of the rings, but we hope that
this estimate can give a reasonable estimate also for the
case considered here. Then, the inverse decay time is
proportional to T . Thus, at temperatures much below the
Debye temperature au~ but above the effective level spac-
ing, coD » T & 5,«, one can have 1/t(J) ( 5,«, and it
should be possible to observe the large diamagnetic re-
sponse.

At lower temperatures T « A, ff the exponential Mott
law, t(J) —(I/coD) exp[4(3b„«/T)'I ], might serve as
a lower limit for the decay time, since the time of
equilibration of the whole system should greatly exceed
this effective hopping time of an electron. Thus, it
increases exponentially by decreasing the localization
length.

Analogous calculations can be performed also for the
orthogonal ensemble corresponding to the zero static
component @ of the flux through a ring. In this case we
obtain as in Ref. [4]

M'. ,(o) = o.

Changing the static component @ of the flux we can have
a crossover between Eqs. (7) and (11). The characteristic
flux P, of this crossover is of the order of Pp(A, «/F, )'I,
where Pp = 27rc/e and F., = vr2Dp/L~ is the Thouless
energy. The dependence of the response on the flux

P is periodic with the period @p/2. We note that its
Aux average is finite and we expect a large diamagnetic
response even in a quasi-one-dimensional conductor.

Adding magnetic or spin-orbit impurities changes
Eqs. (7) and (11). The system with the magnetic im-
purities corresponds to the unitary ensemble. One can
use as before Eq. (7) provided b.,«(J) is substituted by

«(2J)/2. If the magnetic impurities are absent, spin-
orbit ones lead to a different function A,«(J). However,
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this difference is only numerical and does not change the
sign of the response which is in all cases diamagnetic.

We remind one that for the isolated rings the possibility
of the averaging with the fixed chemical potential is a
certain assumption while for J + 0 one should consider
the whole chain, and in the limit L ~ the difference
between the canonical and grand canonical ensembles
vanishes. Taking into account charging effects one can
have effectively isolated rings at finite J. Thus, the
Coulomb repulsion could increase both the amplitude and
the decay time of the dynamic magnetization. A detailed
analysis of these effects will be the subject of further
research.

In conclusion, we showed that a magnetic field ap-
plied perpendicular to a chain of disordered connected
rings causes a macroscopic diamagnetic current. In the
absence of inelastic scattering which can correspond to
low temperatures this current can live for a very long
time. The corresponding magnetization density remains
finite even in the limit of a macroscopically long chain of
perfectly connected rings. At the same time the longitu-
dinal response along the chains shows a dielectric behav-
ior usual for disordered quasi-one-dimensional wires. In
fact, the shorter the localization length along the chain,
the larger the current in the rings and the larger the re-
laxation time to its vanishing thermodynamic value. We
suggest checking our theoretical results by measuring
the dynamic magnetic response of connected mesoscopic
rings in the diffusive regime or, alternatively, of linear
antidot lattices where the mean free path due to elastic
scattering is smaller than the distance between neighbor-
ing antidots. In order to get the full information about
the interplay between localization and persisting currents
in these samples one should do the measurements as a
function of the following.

(a) Flux: In order to check the predicted flux periodic-
ity Po/2, and to get 6,«(J)r from the maximum response,
Eqs. (2), (7), (9), and (10). Furthermore, one can check if
the crossover is approximately at @o(h,fr/E, )'

(b) Frequency: One should see a departure from linear
decay with frequency at cu = 4,«, and one can thus check
the value obtained from (a). Below this frequency one
should see for temperatures T ( A,«a clear plateau and
only at very Iow frequencies co ( I/t(J) a further decay
of the response. At higher temperatures T ) 6,« instead
of a clear plateau one may see only a bump whose onset
gives again A,«and whose vanishing at lower frequencies
may provide information about t(J) and thus about the
relaxation mechanism.

(c) Temperature: This gives another estimate of A, ff
and may provide information about the temperature de-
pendence of the relaxation mechanism. Thus, if one
knows the material parameters n, 7. , r@,MT, S from inde-
pendent measurements one should be able to unambigu-
ously check the validity of our simple model and stimulate
further numerical evaluation of the theory. In summary,
the conditions necessary to observe the effect are L
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L, (J) ~ L, and the dephasing rate should not exceed the
effective level spacing which gives for the dephasing
length /~ = QD(J)r~ the condition l~ ) QL, (J)L. For
J ~ 1 this is the usual mesoscopic regime met in Ref. [1].
For J » 1 one may need to have phase coherence over
several rings, since then L, = MTl. Thus we may hope
that this yields a new contactless method of studying the
localization.
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