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Pressure Dependence of the Superfluid Fraction in 3He-A q

M. Bastea, ' Y. Okuda, ' and H. Kojima'
'Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854

2Department of Applied Physics, Tokyo Jnstitute of Technology, Meguro ku, T-okyo 152, Japan
(Received 7 November 1994)

The superfluid fraction of He-A& was determined in the Ginzburg-Landau (GL) region as a function
of pressure between 10 and 30 bars from the measured spin-entropy wave velocity. The pressure
dependence of the parameter P24, proportional to the fourth order coefficients of GL free energy
expansion, was measured for the first time. At low pressures the parameter approaches the weak
coupling limit in agreement with the theory of Sauls and Serene. The extracted strong coupling
corrections to P24 and Ps at higher pressures are also consistent with the theory.

PACS numbers: 67.57.Bc

Close to the transition temperature, the Ginzburg-
Landau expression for the free energy of the superfiuid
3He can be written in terms of the energy gap 5, the five
fourth order invariants of the order parameter, and their as-
sociated expansion coefficients P; [1,2]. Though the free
energy expansion coefficients are very important in under-
standing the superfiuid properties in the Ginzburg-Landau
region, surprisingly very little experimental information
has been available to determine or constrain their values.
Based on the available experimental data, some unex-
pected values of expansion coefficients were obtained
[3,4] in disagreement with existing theoretical predictions
[5]. Since the values of the expansion coefficients restrict
allowed superfluid states [6], questions have been raised
on the validity of the conventional identification of the
superfiuid 3He-A phase as the Anderson-Brinkman-Morel
(or axial) state [7]. Clear importance of the question
has motivated interests in the expansion coefficients.
Evidence in support of the theory of P coefficients [5]
and the conventional identification have been reported
recently on NMR experiments in the superfluid 3He-8
and A phases in [8] and [9], respectively. We present
here the results of spin-entropy wave experiments in the
superfiuid Ai phase to measure the superfiuid fraction.
The measurement of the superAuid fraction provides new
and additional constraints on the free energy expansion
coefficients.

Consideration of the free energy expansion coefficients
within the BCS weak coupling limit implies that the most
stable state of the order parameter superAuid 3He would be
the Balian-Werthamer 8 state contrary to the observation
of the A phase at high pressures [1]. Intense theoretical
efforts have been made to calculate the "strong coupling"
corrections to the weak coupling limit to account for
the discrepancy [2]. A comprehensive calculation of the
strong coupling corrections as well as Landau parameters
and normal-state transport coefficients has been made
using optimized quasiparticle scattering amplitudes [5].

While theoretical calculations of each of the expansion
coefficients have been made, their measurements are diffi-
cult because only a combination of coefficients can be re-

lated to a measurable quantity. Of particular importance
is the combination P24 (—= P2 + P4) which sets the mag-
nitude of 5 in the A i phase and is simply related to the
measured superfluid fraction (see below). Also of impor-
tance to this Letter is the measurement of the Ai phase
diagram (i.e., the transition temperatures T, ~

and T,2 as a
function of applied field H) which gives

dT, i /dH Ps
dT, 2/dH p24s

'

where P24s =—P2 + P4 + P5 [2,10]. The measurements
of the phase diagram of the A~ phase have been carried
out by the groups at USC [11] and Cornell [12]. The
USC results give precision measurements over a wide
pressure range. The phase diagram provides fixed tem-
perature points extremely useful to research at ultralow
temperatures in high magnetic fields. The doubt in iden-
tifying the A phase as an axial phase is in part based on
the Ai phase diagram measurement. It would, therefore,
be important to provide a simple consistency check of the
phase diagram in terms of the expansion coefficients. The
present measurement of the superfluid fraction in the A]
phase is combined with the phase diagram to determine

P24 and Ps.
To see the relation between the spin-entropy wave ve-

locity and P coefficients, recall that the velocity is given
to a very good approximation by Cz„= (p, /p„) (p/g) &

(h7/2m), where p, /p„ is a tensor quantity of the super-
Auid to normal component density ratio, p the total density,

g the magnetic susceptibility, y the gyromagnetic ratio,
and I the mass of 3He. In the Ginzburg-Landau regime
of the A~ phase, the superfluid fraction [(J ~[) refers to the
sound propagation vector q being perpendicular or parallel
to the anisotropy vector 1] is given by [2]

ps&ll ps& ll I + (F1 /3)
p p 1 + (Ff/3)p, ill/p pz4 T, i

(2)

where p, ~ll/p is the "bare superfluid fraction" stripped of
Fermi liquid corrections, R& = 4, and R~(

= 2. The quan-
tity 1 + F~/3 is the ratio of effective mass to atomic mass
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of 3He, and it accounts for Fermi liquid backflow effects
by including the Landau phenomenological parameter F1
[13]. The factor R~~~/P24 is referred to as the "bare slope. "
The spin-entropy wave velocity thus gives a simple and di-
rect measure of P24.

Since the spin-entropy wave propagation occurs in bulk
liquid, the present superfiuid density measurement is free
of size effects and tortuosity corrections often associ-
ated with fourth sound techniques. No extrapolation of
data close to T, is needed as the A1 phase occupies the
Ginzburg-Landau territory near T, . The value of 1—
T/T, I in the present experiment is at most 0.045.

The spin-entropy wave propagation measurement appa-
ratus is identical to the one described in our previous report
[14]. Oscillating superleak membrane transducers are used
to drive and detect the spin-entropy plane wave resonance
(q ~~ axis) in a cylindrical chamber (radius = 3.75 mm,
length = 12.5 mm). The frequency response of a particu-
lar mode is monitored as the cell cools down or warms
up slowly. Least-squares fits to the frequency response
are carried out to determine the peak amplitude and the
resonance frequency (~500 Hz). The external magnetic
field H (~~ q) for producing the Ai phase is fixed at 2 T in
this Letter. The liquid pressure is varied between 10 and
29 bars. A melting curve thermometer (attached to the de-
magnetization stage) and a vibrating wire (located within
the resonator chamber) are used as temperature sensors.

To see in which direction 1 points relative to q in our
cell, recall that the order parameter of the superAuid A1

phase may be defined by two sets of real orthogonal unit
vectors in spin space (d, e), and in orbital space (m, n),
whereoneusually writes f = 6 X e andi = m x n. The
free energy terms which depend on the orientation of 1 arise
from the magnetic, dipolar, bending, and Aow energies.
Consideration of minimizing the magnetic energy taking
the anisotropy in magnetic susceptibility into account
shows that f is strongly polarized along the direction of
the applied magnetic field H [15]. Now the orientation
dependent part of the dipolar interaction energy between
Cooper pairs may be written as g(f l)2, where g is a
positive constant. The dipolar energy is minimized when
f J 1 and the 1 vector is forced into the plane perpendicular
to H. Since H ~~ q in our cell, the sound propagation
vector q is almost certainly perpendicular to the 1 vector
[16]. The bending and fiow energies are much smaller
and do not contribute significantly to the orientation. It is
concluded that the superAuid tensor component measured
in our experiment is the perpendicular component p, & in
Eq. (2), and the corresponding bare slope is R+/P24.

In addition to the above strong argument for q J 1

alignment based on energetics, there is also some experi-
mental evidence to support the argument. The velocity
and attenuation studies of ultrasound [17] in the AI phase
in a cell similar to ours showed that the same 1 vector tex-
ture was reproduced from run to run when H ~~ q. In our
cell the measured superAuid fraction is reproducible upon
not only warming and cooling through both T, 1 and T,2
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but up to room temperature. Introducing externally ap-
plied heat suddenly (inadvertently at times) into the reso-
nator chamber (and thereby creating some irreproducible
large supercurrents) does not change the measured super-
Auid fraction upon recovery close to the original tempera-
ture. All of these observations indicate that the 1 texture
in the cell is in the stable equilibrium state.

At the phase transition from the A1 to the A2 phase,
the spin-entropy wave would be expected to disappear
abruptly as the governing hydrodynamics changes from
one phase to the other. The observations of rather gradual
disappearance and anomalous damping of the spin-entropy
wave in the vicinity of T,2 have been reported [14].
Similar anomalous behavior is observed at all pressures
of our study. The pressure dependence of this effect will
be reported elsewhere. While the nature of the increased
damping is not yet understood, the temperature at which
the wave propagation vanishes can be measured precisely.
To illustrate this, the fitted peak amplitude A of the n = 2
mode at 16 bars near T,2 is shown as a function of the
square of the resonant frequency (normalized to n = 1

mode) in the inset to Fig. 1. The temperature at which
the amplitude extrapolates to zero is defined as T,2 [11].
The extrapolated resonant frequency of the nth mode
[—= f„(T,2)] at that temperature determines spin-entropy
wave velocity at T,2 and hence the superfluid fraction via
(p, /p, )~r„= i[2f„(T,2)L/n]/(p/g)hy/2mP, where L is
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FIG. 1. Measured ratio of the superfiuid to normal component
densities at T,2 vs pressure. The dots are our data and the
square at the melting pressure is from Ref. [19]. The inset
shows the fitted resonance peak amplitude vs square of the
resonance frequency. The arrow indicates the point where the
spin-entropy wave propagation amplitude extrapolates to zero
at T.2-
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the length of the resonator. The tabulation of p and g
compiled by Wheatley [18] was used.

lt has been established [11]that the temperature width
of the Ai phase is linearly proportional to the externally
applied field in the range of field and pressure of interest
in this Letter. The measured superfluid fraction at T,2 in
our cell is also linearly proportional to the applied field
as demonstrated in Ref. [14]. The measured superfluid
fraction at T,2 can then be written as [p, /p„)&T„=
a(1 —T,2/T, i), where a is a pressure dependent slope.
The temperature dependence is in accord with Eq. (2).
The measured density ratio, p, /p„at T,2, is shown as a
function of pressure (at 10.0, 16.0, 22.9, and 28.6 bars)
in Fig. 1. Uncertainty arising from the extrapolation near
T,2 is estimated to be less than 1.5%. The only other
spin-entropy wave measurement was carried out at the
melting pressure in 0.846 T [19]. Their data at T,2,
corrected for the difference in applied field, is shown in
Fig. 1. Extrapolation of our data to the melting pressure
is reasonably close (within 4%) to theirs.

Equation (2) is used to compute the bare slope from
the measured superfluid fraction at T,2 and the reduced
temperature 1 —T,2/T, i [11]. The result is shown in
Fig. 2. As expected, there is a systematic increase in the
slope as the strong coupling correction increases at higher
pressures. The slope tends towards unity at low pressures
as expected in the weak coupling limit with R& = 4. The
data of [19] are not included since the phase diagram
measurement of [11] does not extend up to the melting
pressure.

The pressure dependence of p24 derived from the bare
slope in Fig. 2 is shown in Fig. 3. To our knowledge, this

1.08

I I

I I

0

1.06

1.04

1.02

1.00

10 20 25 30 35

pressure (bar)

FIG. 2. The bare slope of the superfluid fraction vs pressure.
The weak coupling limit of unity is approached at low
pressures.
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is the first "direct" measurement of p24 in the pressure
range. The theoretical calculation [5] is fairly close in
magnitude and pressure dependence to the present result.
The weak coupling limit of p24 is 4, and our results
approach that limit at low pressures. There is significant
departure from the data of [3] at high pressures.

Using the values of p24 in Fig. 3, the phase diagram
measurement [11],and Eq. (1) we compute pq. Its pres-
sure dependence is shown in Fig. 4. The strong coupling
correction to ps is found to be negative at all pressures in
agreement with theory [5] but in disagreement with [3].
Since the strong coupling correction to p4 is expected to
be negative and the value of ps is found to be less than
—2 in our analysis, the sign of p45 would then be nega-
tive. As discussed in [6], the negative sign of p4q implies
that the order parameter of the A phase would be that of
the axial state. This is consistent with the recent confir-
mation of the conventional axial state identification [9].

The measured jump in specific heat at the normal to
8 transition [13] is in agreement with the theoretical
calculation on strong coupling corrections to pi2 and
P345 [5]. The measured Ai phase diagram [11] is in
reasonable agreement with the theoretical ratio ps/p245.
Our present work on the superfluid fraction in the Ai
phase, when analyzed together with the A1 phase diagram,
gives values of P24 and P5 which are also in reasonable
agreement with the theory. The recent NMR measurement
[8] is in qualitative agreement with p345 derived by the
theory. Contrary to this general agreement, however, the
analysis of the measured depression of the 8 to A transition
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FIG. 3. Pressure dependence of a combination of Ginzburg-
Landau expansion coefficients P&4. The dots are the present
results. The triangles are the theoretical predictions of Sauls
and Serene [5]. The squares are taken from Tang et al. [3].
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temperature in magnetic field gives values of P coefficients
which deviate significantly from the theory [3]. We do not
have an explanation for this deviation. Our work tends to
show that the deviation does not arise from the measured
A1 phase diagram.

We thank Paul de Vegvar for illuminating discussions
on 1 textures. Help in data analysis by G. Adamek is
appreciated. This research is supported by NSF Low
Temperature Physics Program Grant No. DMR9204049.

[1] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
[2] D. Vollhardt and P. Wolfle, The SuperPuid Phases of

pressure (bar)

FIG. 4. Pressure dependence of Ps. The legend is the same
as in Fig. 3.

Helium 3 (Taylor and Francis, London, 1990).
[3] Y.H. Tang, I. Hahn, H. M. Bozler, and C. M. Gould, Phys.

Rev. Lett. 67, 1775 (1991).
[4] C. M. Gould, Physica (Amsterdam) 17SB, 266 (1992).
[5] J.A. Sauls and J.W. Serene, Phys. Rev. B 24, 183 (1981).
[6] G. Barton and M. A. Moore, J. Phys. C 7, 4220 (1974).
[7] P. W. Anderson and P. Morel, Phys. Rev. 123, 1911

(1961).
[8] J.B. Kycia, T. M. Haard, M. R. Rand, H. H. Hensley,

G. F. Moores, Y. Lee, P. J. Hamot, D. T. Sprague, W. P.
Halperin, and E.V. Thuneberg, Phys. Rev. Lett. 72, 864
(1994).

[9] T. R. Mullins, V. V. Dmitriev, A. J. Armstrong, A. J.
Manninen, J.R. Hook, and H. E. Hall, Phys. Rev. Lett.
72, 4117 (1994).

[10] In the usual convention, the P; are normalized to the BCS
weak coupling value ~P& ~

—= —,7j(3)N(0)/87r (k&T, )',
where 2N(0) is the density of states at Fermi energy and

T, is the superAuid transition temperature. The weak
coupling values of the five P; coefficients are in the ratio
—1:2:2:2:—2.

[11] U. E. Israelsson, B.C. Crooker, H. M. Bozler, and C. M.
Gould, Phys. Rev. Lett. 53, 1943 (1984); 54, 254(E)
(1985).

[12] D. C. Sagan, P. G. N. de Vegvar, E. Polturak, L. Friedman,
S.S. -Yan, E.L. Ziercher, and D. M. Lee, Phys. Rev. Lett.
53, 1939 (1984).

[13] D. S. Greywall, Phys. Rev. B 33, 7520 (1986).
[14] M. Bastea, Y. Okuda, V. LaBella, and H. Kojima, Phys.

Rev. Lett. 73, 1126 (1994).
[15] P. G. N. de Vegvar, Phys. Rev. B 30, 6349 (1984).
[16] A clear discussion of these orientational problems are

given in P. G. N. de Vegvar, Ph. D. thesis, Cornell Uni-
versity, 1986 (unpublished), in which experiments on ul-
trasonic studies in the A.

& phase in a cell similar in shape
and size to ours are described.

[17] Paul de Vegvar (private communication).
[18] J.C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).
[19) L. R. Corruccini and D. D. Osheroff, Phys. Rev. Lett. 45,

2029 (1980).

2534


