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We develop the thermodynamic theory for the decomposition of a “coherent” two-phase open system
consisting of an interstitial solid solution in equilibrium with a gas reservoir of solute atoms. It is shown
that, contrary to what is expected for incoherent systems, the phase rule is inapplicable and the “plateau”

on the pressure-composition isotherm does not correspond to two coexisting phases.

The coherency

strain introduces an unsurmountable macroscopic energy barrier between the transforming phases, which
prevents the coexistence of the phases and results in a reversible hysteresis in the pressure-composition
isotherm. The proposed theory is applicable to metal-hydrogen systems.

PACS numbers: 64.70.kb, 64.60.-z, 81.30.—t

It is well known that in two-phase systems with coher-
ent interfaces the transformation-induced strain has a pro-
found effect on the phase transformation thermodynamics,
sometimes qualitatively changing its character [1,2]. The
elastic strain generated by the interfaces is infinitely long
ranged and thus the strain-induced interaction between the
coexisting coherent phases is infinite ranged as well. This
has two nontrivial implications. The first is that the elastic
energy contribution to the total free energy of the coher-
ent system is nonadditive, i.e., it does not meet the major
requirement of the Gibbs thermodynamics. Instead, the
total free energy of the coherent system depends nonlin-
early on the volume fractions of the coexisting phases [3].
As a result, the volume fractions of the coexisting co-
herent phases become internal thermodynamic parameters
which are determined from a minimum free energy condi-
tion. The second implication is that, in the most general
case, the strain energy depends also on the spatial pattern
(microstructure) formed by the coherent domains of the
coexisting phases and, therefore, the microstructure also
becomes a self-adjusting internal thermodynamic parame-
ter [3]. For such a system, the conventional common tan-
gent construction of the additive Gibbs thermodynamics
used to find the equilibrium compositions of the coexist-
ing phases ceases to be valid.

The effect of the coherency strain on the thermodynam-
ics of a closed two-phase system with a conserved num-
ber of atoms has been investigated by Roytburd [1] and
Cahn and Larche [2]. These works considered the re-
placive transformation (decomposition) in an elastically
isotropic system producing a two-phase coherent mix-
ture. It was assumed that the crystal lattice parameters
of the two phases are different but do not depend on the
compositions of these phases. However, the model as-
sumed in [1,2] seems to have a limited application. It is
inapplicable to most systems decomposing by replacive
transformations where the crystal lattice parameters of the
coexisting phases are mainly determined by the composi-
tion (for example, the y-v’ transformation in Ni-Al). Fur-
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thermore, it has been shown by Lee and Tao [4] that, in
the case where the crystal lattice parameters follow the
Vegard law, all the unusual effects expected in coher-
ent thermodynamics [2,3] vanish. These effects can be
expected, however, in systems where the misfitting crys-
tal lattice parameters either do not depend on the phase
compositions at all, as in the Roytburd and the Cahn and
Larche models, or show a very strong deviation from the
Vegard law. The lack of such systems seems to be the
reason why there is still no reliable experimental confir-
mation of the strain effects predicted in [1,2].

It will be shown in this Letter that the situation is dif-
ferent for open systems where the solid solution is in a
dynamic equilibrium with a reservoir of solute atoms. We
demonstrate that, unlike the case of replacive transforma-
tions in coherent solid solutions with a conserved number
of atoms, the strain energy always has a drastic effect on
the thermodynamic behavior of an open coherent system.
These effects should be expected even for an infinitesi-
mal strain energy contribution to the system’s free energy.
Technologically important examples of such open systems
are hydrides in equilibrium with a hydrogen gas reservoir
at fixed pressure p and temperature 7. Particularly, we
demonstrate that for these systems the coherency strain
completely eliminates the two phase equilibrium and pro-
duces a large thermodynamically reversible hysteresis
effect.

Typically, the decomposition of an interstitial solid
solution based on a metal or intermetallic matrix results
in a formation of two phases characterized by different
concentrations of interstitial solute atoms. One phase
may be disordered and the other ordered, or both may
be ordered. According to classical thermodynamics, such
a two-phase system is in thermodynamic equilibrium with
the gas of interstitial atoms, if the chemical potentials u,
and up of an interstitial atom in the « and B solid phases,
are equal to the chemical potential u,(p,T) of an atom
in the gas phase u,(co) = pplcg) = uo(p,T), where c,
and cg are concentrations of interstitial atoms in the «
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and B phases. As long as the concentration of interstitial
atoms in the solid is within the two-phase field of the
phase diagram, the pressure required to transform the «
phase to the B phase is constant. This, in turn, results
in a plateau on the pressure-composition isotherm within
the two-phase composition range. It will be shown below
that even a small strain introduced by the interstitial atoms
drastically changes this picture.

It was shown by Eshelby [5] that the configurationally
dependent strain-induced interaction between dilatation
point defects in an elastically isotropic solid solution is
zero (Crum’s theorem). The Eshelby model, assuming
solute atoms to be misfitting elastic spheres coherently
imbedded into the parent phase matrix of volume V,
results in the following equation for the strain energy:

1+
Eel = NvoGy 1—_2

ggc(l — 7o), %))
g
where N is the total number of equivalent lattice sites
(in the case of an interstitial solution, N is the total
number of interstitial sites) vg = V/N, G, is the shear
modulus, o is the Poisson ratio, gg = da/adc¢ is the
concentration dependence of the crystal lattice parameter
a, © = N;/N, and N, is the total number of interstitial
solutes in the system. In Eq. (1), the term proportional
to ¢? characterizes the configurationally independent
strain-induced interaction which arises through the image
forces associated with the free surface of the system. It
should be noted that the energy (1) depends on the total
number of atoms (through ¢) rather than on the local
concentrations. Therefore, any regrouping of these atoms
over the crystal lattice, particularly the one that transforms
the homogeneous solid solution of the composition ¢ into
a two-phase coherent mixture of a and .8 phases, does
not change the total strain energy. It is the same for the
homogeneous solid solution as for the two-phase coherent
mixture formed by the decomposition of this solution.

Let the a« phase be the parent phase which in the
absence of disorder has no interstitials, i.e., ¢, = 0. Let 8
be an ordered alloy phase which in the fully ordered state
has an interstitial concentration cg = 1. With Eq. (1), the
free energies (per a lattice site) of the @ and B phases in
their single-phase states at pressure p, temperature 7', and
composition ¢ can be presented as [1,2,4,5]

Fo(p,T,c) = fo(p,T,c) + Ac(1 — ¢), (2a)
and
Fg(p,T,c) = fg(p,T,c) + Ac(l = ¢), (2b)
where
A=v0GS}igeé. 3)

In Eq. (2), fo(p,T,c) and fg(p,T,c) are the chemical
contributions to the free energies of the @ and B phases.
We assume that the elastic properties of the a and g
phases are similar and thus A has the same value in
both phases. The values ¢, and cg are related to the
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total interstitial concentration by the atom conservation
equation

wecg + (1 — w)c, =7, @)

where o is the volume fraction of the B phase (more
precisely, w is the relative fraction of the interstitial sites
occupied by the B phase).

The strain energy (per lattice site) of the coherent two-
phase mixture can be presented as

g1 = AC(Ca,cp, @)[1 — T(cq,cp, w)], (5)
where
Cleqrcp,w) = weg + (1 — w)cy . 6)

The total free energy (per lattice site) of a two-phase
closed system at fixed p, 7, and ¢ is thus:

F(p,T,Cica,cp,w) = wfpg(p,T,cp)
+ (1 — w)fa(p,T,co) + Ac(l — ). (7)

Below, without a loss of generality, it is assumed that
cg > co. The equilibrium state at fixed p, T, and ¢ is de-
termined by the minimization of the free energy, Eq. (7),
with respect to the internal thermodynamic parameters c,
and cg under the additional condition of Eq. (4) relating
C, Cq, cp, and w.

In the open system, however, the concentration ¢ is not
fixed but becomes an internal thermodynamic parameter.
It varies until the chemical potential x of interstitial atoms
in the solid equilibrates with that in the gas reservoir.
Then the equilibrium value of ¢ (as well as ¢, and cp)
at fixed p, T, and p is determined by the minimization of
the thermodynamic potential

G(p,T,pica,cp, ¢, w) = wfpglcg)
+ (1 — 0)falca) + A1 —C) — uc, (8)

which is obtained from Eq. (7) by a Legendre transfor-
mation [6]. The minimum condition with respect to ¢,
(0G/9T)r,, = 0, gives (0F /3T)r,, = p, relating the com-
position ¢ to the chemical potential w of the interstitial
atoms in the solid. In equilibrium with the gas phase, u
equals the chemical potential of interstitial atoms in the
gas phase, u,(p,T).

Because the parameters w and ¢ are related by Eq. (4),
it is convenient to eliminate the variable ¢ and use as
independent internal thermodynamic parameters the set
Cascp, and w. Then, Eq. (8) can be rewritten as

G(p,T,picarcp,0) = wfplcg) + (1 = w)falca)
+ A(ca,cp, w)[1 — E(ca, cp, )] — pi(ca,cp, w), (9)

where ¢(cq, cg, w) is given by Eq. (6).

The equilibrium values of ¢,,cg, and o (at constant
p,T, and u) can be found by minimizing G with respect
to these three parameters. To minimize G with respect to
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w, it is convenient to rewrite Eq. (9) as a quadratic form
of w:

G(p,T,u;cq,cp,w) = ¢olca)

+ ¢1(Cdv C,B)a) - ¢2(CQ,C’B)CUZ, (10)
where

H0(ca) = falca) + Aca(l — co) — pcq,
$1(carca) = (cp — )[JM;f_(_)

(11a)

Cg — Cq
+ A(1 — 2¢q) — /.L:|, (11b)
and

Pa(ca,cp) = Alcg — ca)? > 0. (11c¢)

Equation (10) describes three possible dependences of
G on w, shown schematically in Fig. 1 by curves a, b,
and ¢. The curves ¢ and ¢ have only one minimum
which means that only one stable phase can exist: the «
phase for curve a and the B phase for curve ¢. Curve
b has two minima, at w = 0 and at w = 1, separated
by the maximum at w = w*. For the particular curve
b shown, the B phase is stable, whereas the « phase
is metastable. The situation depicted by curve b is the
most interesting, because the phase transition from the
metastable a to the stable B phase turns out to be
impossible. Indeed, the « — B transformation requires
the formation of the two-phase state with the volume
fraction w* of the B phase. This, in turn, requires
the spontaneous increase in the volume-dependent free
energy by a magnitude (V/a®)G(cq,cg, w*), where V is
the volume of the particle, and a is the lattice parameter.
Such an increase is forbidden by the second principle
of the thermodynamics. The present situation is quite
different from that of the phase transformations in the
absence of coherent interfaces and macroscopic strains,
where the transformation barriers are microscopic (the
formation of critical nuclei) and, as such, can be overcome
by thermal fluctuations. Therefore, it follows from the
o dependence of G(cy,cp, ) in Eq. (10), as illustrated
by Fig. 1, that two-phase equilibrium in a coherent open
system is impossible. This also means that the phase rule
becomes inapplicable to coherent open systems.

Since the free energy barrier between the « and
B phase is not surmountable by thermal fluctuations,
the a — B transformation does not start as long as
¢i(ca,cpg) > 0. If u is increased, ¢(cq,cp) decreases
and the a phase loses its stability when ¢(cq,cg) van-
ishes [w = 0 ceases to be a minimum of G(cq,cg, w)].
Then, it follows from the definition (11b) and the condi-
tion ¢ (cq, cg) = O that

[fg(cﬂ) — falca)

+ Al = 2¢q) — Ma(ca)} =0.
C.B — Cq

(12)

It is taken into consideration in Eq. (12) that u = p,(ca)
for the single-phase state of the initial « phase. The
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FIG. 1. Schematic plot of the dependence of the free energy

of the two-phase system on the volume fraction w of the solute-

rich phase.

chemical potential of the a phase follows from Eq. (2a),

IF, ~_ dfa
dc

+ Al — 2¢4). (13)

c=cCq

Ma(ca) =

C=Cq d

Using Eq. (13) to eliminate u,(c,) from Eq. (12) we
obtain the a-phase instability condition in terms of the
concentrations only (no strain effects are involved). It
reads

fplep) = falca)  dfalca) _

cg — Ca dcg,

0. (14)

Equations (12)—(14) can be resolved graphically in the
general case without referring to specific analytical de-
pendences of f,(c) and fg(c) on composition, as long as
these dependences provide the decomposition (i.e., have
a common tangent). This graphic solution is illustrated
by Fig. 2(a). The thin traces in this figure show typi-
cal chemical free energy vs composition curves, f,(c)
and fg(c), for the @ and B phases (i.e., without the
strain contributions). The heavy traces represent the cor-
responding total free energies F, and Fg which include
the strain contributions Ac(1 — ¢). From this figure it is
clear that Eq. (14) cannot be satisfied if ¢, < ¢!, because
then the left side of Eq. (14) is positive. With increasing
ce (i.e., increasing w), Eq. (14) becomes satisfied when
cq in Fig. 2(a) reaches the starting composition c¥, where
the tangent to the curve f,(c) touches the curve fz(c)
for the first time. Therefore, the stability limit of the «
phase ¢, = ¢ is actually determined by the conventional
common tangent construction applied to the (chemical)
free energy curves f,(c) and fg(c) in Fig. 2(a). In addi-
tion to c¥, this graphical construction also determines the
other critical parameters of the transformation: the con-
centration ¢ of the B phase formed at the beginning of
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FIG. 2. Top: schematic free energy curves as a function of
composition of interstitial atoms for the homogeneous « and
B phases of a two-phase system with coherent interfaces. The
thin curves f,(c) and fz(c) represent the chemical contribution
to the free energies. Bottom: chemical potential of the
interstitial hydrogen atoms in the gas phase (proportional to the
gas pressure) as a function of the composition of interstitials in
the solid.

the a« — B transformation and the critical chemical po-
tential u,(cS'), which equals the slope of the tangent line
to the curve F,(c) at the concentration ¢ = ¢3' (slope at
point A).

The gas pressure p; needed to trigger the a — B
transition is determined by

9fa

+ A0 = 2¢%), (15)
ac  le=cy

ueg(p1,T) = palcy) =
which follows from Eq. (13). The composition c?;‘ of
the B phase, formed at the beginning of the o — S
transformation, is not in equilibrium with the external gas
reservoir at the pressure p;, since ,LLB(CSﬁ!) < pe(p1,T) =
ma(cst). Indeed, Fig. 2(a) shows that the slopes of the
tangent lines at points A and C, giving the values of
palcl) = pe(p1,T) and ,U,B(CSB‘), are different. Because
np(cs) < palcs), to establish equilibrium the B phase
has to absorb interstitial atoms from the gas phase until
its composition reaches the final composition cg, where
,uﬁ(cf;) = wo(p1,T) = pqo(c). The composition c’; is
defined by the condition that the slope of the Fg(c)
curve at c’,; equals the slope of the F,(c) curve at the
composition ¢3! (i.e., slope at point B equals that at point
A). Therefore, the absorption isotherm should have a
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plateau at the pressure p; within the composition range
' < ¢ < ¢l [Fig. 2(b)].

The same line of reasoning gives the graphic algorithm
for the desorption isotherm, also illustrated by Fig. 2.
With decreasing cg, the B — « transformation starts at
¢ = cj. The desorption plateau pressure p; is determined
from the equation

aFﬂ 6fﬁ
T) = B) = T Toc
pe(p2.T) = pplep) = —~ =i 9C o=y
+ AQ - 263, (16)

where Fg(c) is given by Eq. (2b). Equation (16) deter-
mines the pressure p, for the reverse 8 — « transforma-
tion. However, the @ phase formed as a result of this
transformation has the composition ¢ and thus is not
in equilibrium with the gas phase, since at this compo-
sition pq(cs) > ug(p2, T) = pg(ch). The a phase has
to desorb interstitial atoms, reducing its composition from
c$t to ¢f, until w.(c,) reaches the equilibrium value
ta(cl) = up(ch) = pg(p2, T), where the slope at point
D equals the slope at point C. Therefore, the desorption
isotherm has a plateau at the pressure p, within the con-
centration range ¢/, < ¢ < cj, as shown in Fig. 2(b).

As follows from the above graphic consideration,
the absorption-desorption curves have considerable hys-
teresis, ug(p1,T) — pg(p2,T) = palclt) — up(cy). The
origin of this hysteresis is the coherent strain. From
Egs. (15) and (16), using the equality 9f,/dclc=c =
afB/ac|C=c;;, which follows from Fig. 2(a), we obtain the
simple expression

,U«g(Pl,T) - ,Uvg(szT) = ZA(CE - CZ:) a7
The chemical potential of interstitial atoms in a diatomic
gas is

p
po(T)’
where po(T) and ,u(T)g are the pressure and chemical
potential in the standard state. With it and Eq. (3) we
obtain a simple equation for the p,/p, ratio characterizing
the thermodynamic hysteresis

n P 4v0Gst—g ag(c;gt — ) .
P2 kT
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pe(p.T) = u(T)% + 5 kTIn
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