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Avalanches in Continuum Driven Dissipative Systems
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We show that continuum driven dissipative systems can have behavior analogous to that of cellular
automata sandpile models. We discuss the conditions for this behavior, and argue that a system which
can be shown to satisfy these criteria will exhibit a broad power law distribution of discrete energy
dissipating avalanches. We give a one-dimensional example of such a system, and show that such
behavior does result when these conditions are met. We then show that the statistical behavior of this
system can be approximated by a much simpler cellular automaton. Finally, we argue that a general
prescription for showing how certain real physical systems can be understood in this manner.

PACS numbers: 64.60.Ht, 05.40.+j, 05.45.+b, 96.60.—j

Cellular automaton (CA) models of sandpiles can be
naturally driven to a scale invariant state, a phenomenon
dubbed "self-organized criticality" (SOC) [1]. This prop-
erty has been invoked to explain the dynamics of driven
dissipative systems which exhibit a broad power law dis-
tribution of discrete energy dissipating events, such as
earthquakes and solar flares [2,3]. However, these cel-
lular models are inherently discontinuous since they are
solved on a discrete grid with the time updating done in a
series of discontinuous steps. This poses the problem of
how such CA models can quantitatively mimic the behav-
ior of continuum systems, such as the coronal magnetic
field of solar active regions or the stress along a geologic
fault, which have no obvious cellular structure and whose
evolution does not proceed in discrete steps. Carlson and
Langer [4] have given an example of a temporally con-
tinuous model consisting of discrete blocks that exhibits
a broad distribution of avalanche-type events. However,
there has not previously been a demonstration that a con-
tinuum field model can exhibit SOC-type behavior. In
this Letter we address the question of what physical prop-
erties of continuum driven dissipative systems lead to
such avalanche behavior. We then give an example of
such a system and show that under certain conditions it
will display a scale invariant avalanche distribution. We
then show how a CA model can reproduce the behavior of
this system. This work provides a prescription for arguing
that systems such as solar active regions can be described
as SOC-type systems.

ln a typical CA sandpile model, a field @ is defined
on a spatial grid. Another field, which we will term the
instability field I(@), is a local functional of @. The
field is defined to be locally unstable at a particular
position if ~I($)~ there exceeds some critical value. When
a point becomes unstable, P is readjusted by diffusing
it among the neighboring points so as to reduce ~I(P)~
there, and in the process making the original location
now stable. This may force neighboring points to become
unstable. The evolution of the system proceeds by
incrementing @ at some location on the grid. The field
is then simultaneously readjusted at any unstable points.

If any new unstable locations have been created in this
readjustment step, the field is then readjusted at these
locations. This readjustment step is iterated until the
field relaxes to a state which is stable everywhere. This
event, from the onset of an instability to the eventual
stabilization of the field, is termed an avalanche. The
field is then incremented again at some location, and this
process is continued. The field eventually reaches a state
where the distribution of avalanches becomes stationary.

We use the properties of these CA models to guide
us in understanding how a continuum system can have
analogous behavior. First, the field of the continuum
system must possess a local threshold instability which
causes rapid local diffusion of the field. For the system
to be physically reasonable, the local instability must
eventually be self-stabilizing [i.e., locally reduce ~I(@)~],
and must dissipate energy in the field. In the CA model,
the field configuration is stable, and no readjustment
takes place as long as the instability criterion is not met.
In addition, the system is only driven during the time
between the occurrences of avalanches. In a continuum
system, these conditions correspond to the limit in which
the instability time scale is very much faster than both
the evolutionary time scale when an instability is not
occurring and the driving time scale. Thus whenever an
instability is occurring, the effect of the driving term is
negligible. In addition, the slow evolution that takes place
when no instability is present must be much slower than
the driving so that the structure in the field configuration
does not dissipate away during the time period between
avalanches. For the avalanches to be distinct, the driving
time scale must also be slow enough so that on average
not more than a single avalanche is occurring at the same
time.

A crucial aspect of these CA models is that avalanches
of all sizes occur, and that the distribution is scale
invariant over a large range. If the avalanche process
is governed by a local conservation law, then the only
way in which field can be removed from a region is
for it to be transported out through the boundary by the
action of avalanches. Consider a subregion within the
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system of radius r. In steady state, the amount of field
added to this region by the driving term must equal the
amount of field removed from this region by the action
of all avalanches. If avalanches are short ranged, and

only reach out to a maximum length A from their point
of origin, then only those avalanches originating within
distance A of the boundary of the region can change the
amount of field within the volume. The volume of the
region contributing to the outward f1ux of field scales
as r ' A, where d is the dimensionality of space, while
the total volume of the subregion scales as r . Thus the
total amount of field escaping from the subregion cannot
match the field added to the subregion as r becomes
large. It is not possible for increased flux from the
surface of the subregion to make up for this shortfall
since the threshold nature of the instability does not
allow arbitrarily large amounts of the instability field
to build up in any location (since at the start and end
of an avalanche, the field is in a stable configuration).
Therefore, avalanches cannot have a characteristic decay
length, and there must be large avalanches which cover
regions approaching the system size. If any characteristic
length scale in the dynamical equations is very much less
than the size of the system, the fact that large avalanches
must exist suggests that there will be a power law
distribution of avalanches over intermediate length scales
(as is observed). Furthermore, if the energy dissipated
per unit volume in an instability is independent of the
size of an avalanche, then the distribution of avalanches
as a function of energy will also be a power law. We
found [2] that if the redistribution law does not conserve
the field (or the instability field), then the distribution of
avalanches is not a power law. However, as we shall
show, the existence of a conservation law alone does not
guarantee a power law distribution of avalanches.

We note that, if instead of readjusting ~I(@)~ to a value
below the instability threshold, an instability reduces
it to a value equal to the threshold, then the overall
behavior of the system will be very different. Eventually
the instability field will build up to a value which is
everywhere equal to the threshold. The addition of field
to any point will then result in an instability, and this
additional bit of field will be transported to the boundary.
All avalanches can only terminate at the boundary. In
order for the system to have avalanches which can
terminate within the region, there must be locations on the
lattice which can remain stable even if a neighboring point
becomes unstable [5]. This is possible if the redistribution
of field in an instability lowers the magnitude of the
instability field to a value below the threshold. Thus,
the dynamical equations have a memory which allows an
instability to carry the local field configuration past the
point at which it becomes unstable to begin with. The
system of differential equations describing such a system
must be at least second order in time, since a first order
in time evolution equation cannot have such behavior.
Equivalently, the dynamical equations for the field can
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where p(x, t) is a scalar field, D(x, t) is a spatially and
temporally varying diffusion term, S(x, t) is the source
term, and D „»D;„. The function Q is double valued
and dependent upon the history for pk ( ~Bp/Bx~ ( k,
where k is the instability threshold and 0 ( P ( 1. The
value of Q remains in the low state Q = D;„until the
slope ~B@/Rx~ ) k, whereupon it undergoes a transition
to the high state. However, when in the high state,
Q = D,„, it will not make the transition to the low state
until the slope ~Bp/Bx~ ( pk. Thus Q acts very much
like a physical instability in that the value of the slope
k required to turn on the instability is greater than the
slope pk required to maintain the instability once it is
turned on. When Q changes to D „,the diffusive term

D(x, t) begins to rise toward D,„. If the local slope
remains above k for a time longer than of order ~ then the
diffusion coefficient will saturate at D = D „.Once the
instability is turned off, the diffusion coefficient decays
back to D;„with time constant ~.

If the field is everywhere stable, the evolution of @
will be governed by the source term 5 for small D;„.
However, eventually at some location the slope will
exceed the threshold, ~BP/Bx~ ) k. As D increases, the
field @ then begins to diffuse at this location, which has
the effect of locally reducing the slope ~B@/Bx~ while at

be written as n coupled first order equations, with n ~ 2.
We note, e.g. , that the first order system studied by Diaz-
Guilera [6] will not exhibit a power law distribution of
avalanches.

To summarize, we expect that driven dissipative sys-
tems which meet the following criteria can be naturally
driven to a state with a broad power law distribution of
discrete energy dissipating events. First, there must be
a locally conserved field which is subject to a threshold
instability. The instability leads to rapid local diffusion
of the field, which dissipates energy and locally stabilizes
the field. The field must have metastable states in which
energy can be built up by the driving term. The slow
evolutionary time scale of these metastable states must
be very much slower than the rapid instability time scale,
and the driving time scale must be intermediate between
the two. Furthermore, any intrinsic length scales associ-
ated with the instability must be very much less than the
size of the system. Finally, the system must be driven for
a long enough period for it to settle to a steady state.

A simple one-dimensional example of a system which
meets the above requirements is given by
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the same time increasing the slope at nearby locations,
so that the instability can spread. If D „is sufficiently
large, the diffusive term can dominate over the driving
term S, and the effect of the driving term is negligible
over the course of an avalanche. Eventually the field
returns to a state which is everywhere stable, and D is
again everywhere small. There are a number of intrinsic
length and time scales in this system. The constant ~
sets a characteristic time scale for an instability. The
characteristic length Bx = QrD, „ is of order of the
minimum size region over which ~B@/Bx~ ~ k where D
can build up to value D,„before the instability turns off.

We define the energy density by the square of the field

@, similar to the field energy in a magnetic system, the
stress energy in an elastic medium, or the gravitational
potential energy of a pile of sand. The effect of an
instability is to reduce the total energy in the field since
8/rlt f P (x, t) dx = —2 f D(x, t)(B@/rex)2dx ( 0, where
we have used the boundary condition @ = 0 at x =
0, L. Note that the energy dissipation rate per unit volume
for avalanches of any size greater than 6x is of order
D „k . Thus, the total energy will fluctuate, slowly
increasing due to the driving term (for (S) 4 0), and
rapidly decreasing in bursts due to the diffusive term.

We solve Eq. (1) using an explicit finite difference
code. We consider Eq. (1) as if it were a phenomeno-
logical equation of motion for a physical system. As with
all dynamical equations describing macroscopic physical
systems, Eq. (1) will be valid only down to some limiting
length and time scale, below which the relevant physics is
different. In that spirit, we consider the continuum limit
of the discretized solutions to Eq. (1) where the grid size
Ax and time step At represents the minimum length and
time scale of validity of Eq. (1). Furthermore, we will
consider the behavior of solutions of Eq. (1) over times
much longer than ~, and for 6x much smaller than the
size of the system. We define the field P(x, t) at each
spatial grid point, while the diffusion term D(x, t) and
the slope 8@/rlx are defined at the half-grid points. To
check if we have numerically resolved the equations, we
solved a number of initial value problems with S = 0,
D,„=5, D;„=0, r = 1, and p = 0.9. We find that
due to the discontinuous nature of Q, these numerical so-
lutions develop significant structure in dP/dx and D on
length scales down to the grid spacing during the course
of an avalanche. However, as Ax becomes very small
compared to Bx, we find that the evolution of P(x, t) and
the total field energy become approximately independent
of the grid size and time step. This system is quite sen-
sitive to initial conditions due to the threshold nature of
Q, and the numerical solutions with decreasing Ax do not
necessarily converge. While these solutions are not truly
resolved, these differences are small, and the macroscopic
evolution of the system for these initial value problems
is nearly independent of the lower length cutoff. How-
ever, a small but nonzero D;„and the addition of a small
diffusive term to Eq. (1b) make the solutions smooth and

numerically resolvable without substantially changing the
macroscopic behavior.

Next we investigate the long term behavior of the
system for continuous driving. We solve Eq. (1) over
the domain 0 ~ x ~ 40, with the driving term S(x, t) =
Sp[20 —~20 —x~]. The driving term increases the slope
~B@/rjx~ everywhere at the same rate (except, of course,
at the midpoint x = 20). We choose b,x = 0.1, D,„=5,
D;„=0,7 = l, k =0.04, p =0.9, aildSp = 3 X 10
for which 6x = 2.2 and the above criteria are satisfied.
We start the field in a random configuration, and find
that it eventually reaches a statistical steady state which
is independent of the initial state. We find that the energy
in the field fluctuates as in the CA models, steadily
rising due to the driving term, but punctuated by rapid
decreases due to avalanches. In the inset of Fig. 1 we
show a typical time series of the energy dissipation rate,
given by the negative of the time derivative of the total
energy. In Fig. 1 we show a histogram of the distribution
of avalanches as a function of energy dissipation. The
distribution is approximately power law over a large
range, F(F) = FOF ~, with g = 1. The precise value of g
is somewhat uncertain due to the relatively small number
of avalanches (a total of 353 events are tabulated). The
lower cutoff to the power law E;„ is of order of the
energy dissipated in a region of size 6x in time 7-, E;„=
rBxD,„k2 = 2 X 10 2. We find that the slope g is not
strongly sensitive to the driving rate So, the size of the
domain, the threshold k, or p for 0.7 ( p ( 0.95. The
behavior of this system is therefore quite similar to that of
the sandpile automata in that the macroscopic behavior is
robust to changes in the microscopic equations, provided
that the conditions given earlier remain valid.

Reducing the grid spacing Ax does not change the power
law index g, but does lead to more frequent avalanches.
This is due to the fact that there is structure on smaller
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FIG. 1. Avalanche rate vs energy for the continuum system
(triangles) and for the CA model (diamonds). The values of
the parameters for the continuum system are such that the
inequality conditions given in the text are satisfied. The curves
have been shifted for clarity. For reference the solid line has
logarithmic slope —1. Inset: energy dissipation rate vs time.
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length scales, so that the likelihood of the slope at some
point exceeding k increases. However, the total energy
added to the system is roughly the same, and must equal the
total energy dissipated by all avalanches, f EF(E) dE =
[Fp/(2 g)]Email = FpE . The fact that smaller grid
spacing leads to an increase in Fo requires a correspond-
ing decrease in F. „. For smaller and smaller Ax, the
avalanches become more and more frequent until eventu-
ally the avalanches merge and are no longer distinct. For
small but nonzero D;„,we find that the overall avalanche
rate Fo eventually stabilizes as Ax is decreased. However,
for the parameters listed above, as D;„ is increased above
-10 6, the behavior of the solutions changes greatly, with
mostly large avalanches occurring. The distribution be-
comes a broad peak from energy approximately 0.3 to
1.5; in other words, all avalanches are system-wide events.
This is because the period of time between avalanches
is greatly increased since the diffusive term smooths out
the large peaks in BP/Bx, which are the trigger sites for
avalanches. By the time an avalanche is triggered, the field
has built up to an extent that the characteristic instability
length is of order of the system size. This is an instance in
which the avalanche distribution is not a power law, even
though a conservation law for @ exists. A similar behav-
ior (an excess of large events) occurs as P ~ 1 because
for small events Q rapidly reverts to the low state before
D can rise to an appreciable value. This has the same ef-
fect as a nonzero D;„. This behavior is in part due to the
nature of the driving term which has constant slope. If in-
stead we drive the system with d5(x, r)/dx having spatial
and temporal variations so that localized regions may have
much higher driving rates, the avalanche rate is increased,
and again a power law distribution of avalanches can re-
sult if the rate is large enough so that small regions can
become unstable. In both these cases with non-power-law
avalanche distributions, the slow evolutionary time scale
is fast enough to allow significant dissipation of structures
between avalanches. Note that an excess of large events
is seen both in real sandpiles [7] and in the sliding block
model of Carlson and Langer [4].

We next demonstrate that the statistical behavior of
this system can be approximated by a much simpler CA
model which by construction trivially satisfies the above
constraints. We define the field @ at discrete grid points
separated by the characteristic length 6x = 2.2. The field
is locally unstable whenever the slope between any two
adjacent points exceeds k. When this occurs we decrease
the field @ at the higher point while simultaneously
increasing the value of @ by an equal amount at the
lower point, so as to reduce the slope between them
by k. We drive the system by adding a random small
quantity 6@ to the field P at a random location. The
evolution proceeds as for the CA model described earlier.
While the driving does not strictly mimic that of Eq. (1)
since the average field added is independent of position,
we find that for 6$/Ax ) 0.2k avalanches are initiated

roughly independently of position, with a slightly larger
number initiated at the edges x = O, L. Avalanches are
triggered by randomness in the driving term, rather than

by fiuctuations in the configuration of @. In Fig. 1 we
compare the avalanche distribution for the CA model with
that of Eq. (1). The two distributions are quite similar,
with the upper rollovers differing due to the difference
in avalanche rate. We note that the CA avalanche
distribution deviates somewhat from a power law due
to the small number of grid points I-/Bx = 18. The
continuum distribution suffers from this same problem, in
addition to the statistical uncertainty mentioned earlier.

More importantly, the general overall behavior of the
system is preserved. The CA model is far simpler than
Eq. (1), yet it retains the essential physics which leads
to the macroscopic avalanche behavior. An important
advantage in making use of such CA models is the fact
that the computational time may be orders of magnitude
faster than solving the full equations of a much more

complex system. Even for the relatively simple 1D
system given by Eq. (1), several days of computational
time is required to tabulate enough events to make Fig. 1.

For a system as large and complex as the magnetized
coronal plasma of a solar active region, a full solution of
the equations of motion is well beyond present capabili-
ties. Even if it were possible, complete numerical solu-
tions of the equations of motion would probably also not
be very illuminating due to their overwhelming complex-
ity. In cases such as this we argue that if the system can
be shown to satisfy the criteria given above, then while
the microphysics may not be fully understood, one can
still hope to understand some of the macroscopic behav-
ior [8]. Furthermore, this can provide a justification for
the use of sandpile type CA models in modeling their
evolution. An attractive feature of these models is their
conceptual simplicity, which may provide some insight
into the behavior of the full system.
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