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Iterated Moire Maps and Braiding of Chiral Polymer Crystals
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In the hexagonal columnar phase of chiral polymers a bias towards cholesteric twist competes with
braiding along an average direction. When the chirality is strong, screw dislocations proliferate, leading
to either a tilt grain boundary phase or a new "moire state" with twisted bond order. In the latter case,
polymer trajectories in the plane perpendicular to their average direction are described by iterated moire
maps of remarkable complexity.

PACS numbers: 61.30.3f, 61.43.Hv, 61.72.Bb, 87.15.By

A notable feature of biological materials is the profu-
sion of long polymer molecules with a definite handedness.
DNA, polypeptides (such as poly-y-benzyl-glutamate),
and polysaccharides (such as xanthan) can all be synthe-
sized with a preferred chirality. Long polymers in dense
solution often crystallize into a hexagonal columnar phase.
When the polymers are chiral this close packing into a tri-
angular lattice competes with the tendency for the poly-
mers to twist macroscopically [1] as in cholesteric liquid
crystals. Similar to the twist grain boundary phase of chi-
ral smectics [2], macroscopic chirality can proliferate when
screw dislocations enter the crystal. Like flux lines in a
type II superconductor, dislocations only appear, provided
the free energy reduction from the chiral couplings exceeds
the dislocation core energy. If the chirality is weak, a
defect-free hexagonal columnar phase persists, as in the
Meissner phase of superconductors.

In this Letter we explore in detail the effect of chirality
on the hexagonal columnar phases [3] of long polymers.
We neglect for simplicity heterogeneity along the polymer
backbones and work with a two component displacement
field perpendicular to the local polymer direction. The
usual chiral term relevant for cholesteric liquid crystals
produces the polymer tilt grain boundary phase, similar to
the smectic-A* phase [2]. We find, as well, an additional
term in the free energy which favors the rotation of the
bond order along the average polymer direction. This term
leads to braided polymers with twisting describable by a
sequence of moire patterns.

Using continuum elastic theory we estimate the critical
values of the chiral couplings above which screw disloca-
tions enter. On a more microscopic level, we propose a
set of lock-in moire textures which should be especially
low in elastic energy. These states are entangled and self-
similar, and lead to tortuous polymer paths of remarkable
complexity, reminiscent of chaotic dynamical systems.

When polymer nematics crystallize, the areal polymer
density in a plane perpendicular to the average direction
may be approximated as p = po + P p (r) exp[ —tG
r}, where the iG }are the six smallest reciprocal lattice
vectors of a triangular lattice. We take the average poly-
mer direction here and throughout to be z, with G .z =
0. Each plane wave is modulated by a spatially vary-
ing magnitude and phase p (r) = Ip (r)Iexp(iG .u(r)},
where u is a two-dimensional displacement field. In ad-
dition, we have a nematic order parameter 6 = z + 6n
and, in the case of a triangular lattice of polymers, a
bond field O6 which measures the bond-orientational or-
der in the x-y plane, modulo 2'/6. Under a global
rotation about the x axis or y axis by an angle O or
Oy respectively, n ~ n + 8 X 6 = z + Oy x Oz y, i.e.,
Bn ~ 6n + Oyx —O, y. Similarly under a global rotation
about the@ axis by O„O6 ~ O6 + O, . Under suchrotations
r ~ r —0 && r leading to a position dependent change in
the phase of p (r). To insure rotational invariance, deriva-
tives of p (r) must be accompanied by the fields 06 and
Bn [4], and we are led to the Landau free energy
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Crystalline order arises for b sufficiently negative so that (p ) 4 0. Because of the third order term, this transition will,
in general, be first order.

To this free energy we add two more pieces. It is convenient, but not essential, to imagine that the hexagonal columnar
density waves arise from a phase with local nematic order as well as sixfold bond order perpendicular to the director
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axis. This "N + 6" phase has been studied by Toner [5]. Although the present experimental evidence for N + 6 order
in polymer nematics is sketchy, such phases seem highly likely in columnar systems, in analogy to the hexatic order
expected for vortex lines in high temperature superconductors [6]. In the absence of chirality we have the usual elastic
energies of the nematic field and the bond angle field

+() =
z [K)(Vj 6n) + Kz(V~ x Bn) + K3(B,Bn) + K„(a,06)

+ K„(Vi86) + 2CB, 86Vi x Bn + 2C'Vi06 x B,Bn], (2)

where the (K;) are Frank constants, KA and K~ are hexaticII

stiffnesses parallel and perpendicular to z, and C and C'
are the allowed, nonchiral couplings between O6 and 6n
[5]. For long chain polymers K~ && Kz K3.

Finally, we add those chiral terms which respect the
nematic symmetry. If there is no preferred direction along
the polymers then the free energy must be invariant under
n —n. Additionally, since changes in O6 are measured
with respect to the n axis, under nematic inversion O6
—

O6 and the vector v —= VO6 changes sign. Under spatial
inversion n —n, O6 —O6, and, hence, v v. The
chiral free energy density +' contains two distinct terms
invariant under nematic inversion but which change sign
under parity [7],

Kzqon (V x n) —K~qov. fl

= —y Vg X 6n —y'Q, O6, (3)
with y = K2qo and y' = K~qo. The first term oftenII

leads to cholesteric twist with period 2'/qo along a
line perpendicular to the plane in which the nematic
director lies. The second induces twist into the bond-
order parameter 06 with period 2'/qo along i. The
consequences of this additional chiral coupling is the
main subject of this Letter. The total free energy is
F = f d r [+q + go + g*]. Note the close similarity
between (1)—(3) and the Ginzburg-Landau theory of a
superconductor in a magnetic field. The fields 6n and
O6 are "gauge fields" minimally coupled to the complex
order parameters (p (r)) by the constraint of rotational
invariance. There are tvvo distinct "magnetic" fields y and
y'

Provided b « 0, we can set p = IpoI exp(iG u(r)]
and minimize F to find 6n; = B,u; and O6 =

2 e;j0;uj,
where E'zy = E'yx: 1 and Fxz: ~yy: 0. The resulting
elastic free energy is now

F= d r p, u, + u;;+ (6,u;)

—yV~ x Bn —y'8, 06, (4)

where u;, =
z (a;u, + a, u;), p =

4 IGI Ipol (A + B)
and A =

4 IGI4IpoIz(A —B). In the columnar crystal
the two chiral terms are the same if B,B; = 8;8, . How-
ever, in the presence of dislocations, derivatives do not
commute, V& X 6n = E'j'8'8 uj 4 8 E''jB uj = 2[9 O6,
i = x, y,' j = x, y. Burgers vectors of dislocations in
a hexagonal columnar phase lie in the x-y plane, and
there are three generic types [3]: a screw dislocation,

an edge dislocation with tangent along i, and an edge
dislocation lying in the x-y plane. The latter defect
requires aligned polymer ends which we neglect in this
Letter. The remaining dislocations must lie in a plane
spanned by their Burgers vector b and i, which amounts
to choosing dislocation complexions with o. y cIyz,
where the dislocation density tensor u~; is the density
of dislocations with tangents along the y direction with
Burgers vectors pointing in the i direction [6].

Proceeding as in [6,8] we introduce dislocations into
u(r). The resulting noncommutivity of derivatives is rep-
resented by the dislocation density nj;. One can solve
for w~, in terms of the dislocation density o.~;. In terms
of the nematic and bond-order field noncommutivity of
derivatives means 2a, 8, —V, x Bn = —Tr [a]. The en-

ergy per unit length of a screw dislocation is finite, while
that of an edge dislocation lying along the z direction di-
verges logarithmically with system size [10]. The screw
dislocation energy depends on the dimensionless parame-
ter 8 = (K3$~/p, g, )'~, where $~ and g, are short distance
cutoffs in the perpendicular and parallel directions, respec-
tively. We estimate 6 » 1 for polymer crystals which is
the condition that the response to chirality be similar to that
of type II as opposed to type I superconductors [2]. In this
limit the free energy per unit length of a screw dislocation
is f, = p, K3 b /2rrg2$~, where b is the length of the3 4 i/4 2

Burgers vector.
If the chirality is strong and y » y', we expect

the polymer analog of the Renn-Lubensky twist-grain-
boundary state [2]. Each of these tilt grain boundaries
(TGB) is composed of a parallel array of screw dislo-
cations lying, say, in the x-z plane, pointing along the
x axis and uniformly spaced along z with spacing d.
As illustrated in Fig. 1, this dislocation texture causes a
discrete rotation P = tan '(b/d) in the average polymer
direction. The spatial integral of V& X 6n is nonzero,
while the integral of B,O6 vanishes. The TGB state ap-
pears when the chiral coupling y exceeds the critical
value y, = f„„, /b The diffraction . signature is simi-
lar to that of the smectic-A* phase: If the pitch axis is

y so that the polymers lie, on average, in the x-z plane,
the structure function would consist of two Bragg circles
with radius 2'/a lying in a q -q, plane and centered
on q = (0, ~27r/~3a, 0), where ao is the lattice constant
and two Bragg spots at q~ = ~4'/~3ao. These fea-
tures should have widths —2~/d' along q~, where d' is
the spacing between tilt grain boundaries. If the rotation
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FIG. 2. A projected top view of the moire map with rotation
angle cb &

= 21.8' iterated 3 times. The inset shows four
random polymer paths (far from the center) resulting from the
same map iterated 99 times.

FIG. 3. The moire state. The thick tubes running in the
z direction are polymers, while the dark lines are stacked
honeycomb arrays of screw dislocations.

G = 4~/~3ao. The braided crystal described by the
iterated moire map should exhibit a Bragg ring at iq~ i

=
G in the q, = 0 plane. The ring should be very sharp
along q+, and of width -2'/d' along q„where d' is
the spacing between moire planes. We estimate that d' =
a„= Qao/qo. As in the Renn-Lubensky state [2], rational
moire rotations with angle @ = 2vrs/t, where s and t are
relatively prime integers, would cause the Bragg rings to
break up into t spots spaced out around the ring, with
additional structure along q, .

The phase diagram in Fig. 1 summarizes our conclu-
sions. The hexagonal columnar phase is like the Meissner
phase of type II superconductors. The tw o chiral couplings

y and y' cause screw dislocations to penetrate the crystal
above critical strengths y, and y,', in much the same way as
vortices enter type II superconductors above the lower crit-
ical field H, ~. Although we have focused here on TGB and
moire states, more exotic screw dislocation phases could
also appear. The braided moire state is qualitatively new,
and its experimental observation would be of considerable
interest. Surprisingly little is known about the intricate
trajectories produced by the iterated moire maps shown in
Fig. 2. These could be studied experimentally via neutron
diffraction in hexagonal columnar crystals with a dilute
concentration of deuterated polymer strands. Numerical
studies of the local fractal dimension and Lyapunov expo-
nent are currently in progress.
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