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Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient
in a Slit-Shaped Micropore
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A novel nonequilibrium molecular dynamics simulation technique has been developed whereby the
Aux of particles, Bowing between explicitly defined regions of different constant chemical potential,
is measured directly by counting particles. The method uses both stochastic and dynamic steps. A
linear relationship between tlux and concentration gradient (Fick's law) is found for methane in a
carbonaceous slit micropore with a diffuse wall condition. Diffusion coefficients thereby calculated are
larger than transport diffusivities from equilibrium simulations using Darken's rule.

PACS numbers: 47.55.Mh, 05.60.+w, 61.20.Ja, 66.20.+d

Both the Onsager and Stefan-Maxwell formulations of
irreversible thermodynamics recognize that the gradient
of chemical potential is the driving force for isothermal
mass transport [1] and that the flux can be identified as
the sum of a cooperative viscous and a purely diffusive
component [2]. Molecular dynamics simulations of co-
operative viscous (Hagen-Poiseuille) flow [3—5] in pores
have been carried out by giving each particle in the simu-
lation an identical force in order to induce flow, with
temperature rescaling to remove the heat artificially in-
troduced in the system by the force. The magnitude of
the force is unrealistically large, typically many orders of
magnitude greater than gravity. Because of the constant
particle density along the fIow direction, these simulations
give limited information about diffusive properties of the
system, and calculations of viscosity (from Poiseuille s

equation) make the questionable assumption that con-
tinuum hydrodynamics still applies to highly confined
fluids [6].

Self-diffusion coefficients can be calculated using stan-
dard equilibrium molecular dynamics (EMD) either from
the time evolution of the mean squared displacement
(Einstein relation) or from an integral over the ve-
locity autocorrelation function (Green-Kubo relation) [7].
The self-diffusion coefficient, multiplied by the so-called
Darken factor, d lnf /d lnp (where f is the bulk gas fu-
gacity, p is the density of fluid in the pore), gives a value
for the "transport diffusion coefficient" [8]. However, this
approach ignores viscous cooperative effects and also re-
quires that the system remains close to equilibrium, since
the diffusion coefficients in EMD are calculated from
equilibrium fIuctuations.

The objective of this work was to develop a viable
nonequilibrium molecular dynamics (NEMD) scheme
which can simultaneously simulate both the diffusive and
viscous components of the molecular transport and can
operate arbitrarily far from equilibrium. Maginn, Bell,
and Theodorou developed two NEMD schemes for trans-

port diffusion restricted to the linear response regime [9].
In our simulation scheme shown in Fig. 1, the source and
sink regions are maintained at different chemical poten-
tials. Particles How down the chemical potential gradient
(in the x direction) and the flux is measured by counting
particles fIowing between the regions of controlled chemi-
cal potential, thereby providing a direct realization of
a Thevenin ensemble [10]. These conditions relate
directly to those prevailing in many applications of, and
experiments on, porous materials, in which fIux is driven
by a chemical potential gradient [8]. Our approach
has certain similarities to that of Sun and Ebner [11],
who maintained their source region at constant density
by compressing the particles in this region into a new,
smaller volume and inserting additional particles into the
empty part of the old volume, the sink region being held
at zero density by deleting any particles entering it. Our
method for maintaining the chemical potentials in the end
regions uses stochastic particle creation and deletion trials
according to the prescription of grand canonical Monte
Carlo (GCMC) [7]. The viability of such a synthesis of
the elements of GCMC and MD into "Grand Canonical
Molecular Dynamics" has been demonstrated by Cielinski
and Quirke [12] and by later workers [13,14]. Heffelfin-
ger and van Swol have developed a method of this type,

FIG. 1. NEMD simulation scheme. Chemical potentials are
constant in the sink and source regions, where stochastic
(GCMC) creation and destruction occur (see text). A dynamic
simulation is implemented in the How region.
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but without a chemical potential gradient, for directly
simulating tracer diffusion [15].

The dynamic part of the simulation uses a Verlet
leapfrog algorithm [7] with a time step of 3.7 fs. The
stochastic part of the simulation employs the usual GCMC
prescription [7] for creation and destruction trials in each
control region separately. Creations are accepted with

probability

N+1
P,",, =min 1,

zV
exp( —PhE)

zVP„;"= min 1, exp( —Pb, E) (3)

Microscopic reversibility requires that the number of crea-
tion attempts be equal to the number of destruction at-
tempts in each region. Periodic boundary conditions [7]
are applied in the direction normal to the flow. In the
direction parallel to the flow, particles crossing the end
of the box leave the simulation. In preliminary investi-
gations of possible schemes, we tried a method with pe-
riodic boundaries in the flow direction and an extra flow
region spanning a periodic boundary. This necessitated
a zero streaming velocity in the two control regions and
caused a spurious discontinuity in velocity at the bound-
aries between regions. Because particles can flow out of
the system into oblivion, a high ratio of stochastic to dy-
namical moves is required in order to maintain the con-
centration corresponding to the chemical potential in the
control region (the "correct" relationship between chemi-
cal potential and concentration is established in separate
equilibrium GCMC simulations [7]). Stochastic:dynamic
ratios of between 20:1 and 110:1were used for the state
conditions we studied.

The streaming velocity added to the molecular veloci-
ties of newly created particles is calculated by taking a
value for the flux and dividing it by the concentration in
the control regions [1]. However, since Aux is the object
of the simulation, it is necessary to give the particles a
suitable initial streaming velocity, and to update this from
calculated fluxes as the simulation proceeds. The system
was prone to chaotic instabilities, depending on the way
that measured streaming velocities were fed back. A

where z = exp(Pp)/A3 is the absolute activity at tem-
perature kT = 1/P, p, is the chemical potential, and A is
the de Broglie wavelength,

A = (Ph /2' m)'~ . (2)

The volume V and number of particles N refer to the
control volumes in question [12],not to the whole system.
When a creation is accepted, the particle is given a
velocity, selected from a Maxwell-Boltzmann distribution
corresponding to the simulation temperature. To this is
added a value for the streaming velocity taken from the
simulation (see below). Destructions from a given control
region are accepted with probability

Qij 4E (4)

Methane parameters were used: o. = 0.381 nm and e/k =
148.1 K [17]. The pair interactions were truncated at

r;j = 5'. Long-range corrections were not applied. The
interaction energy between a fluid particle and an indi-
vidual pore wall (modeled as a graphite surface) was
given by the 10-4-3 potential of Steele [18],

u,2(z) = 2vrP, s,fa,fk —
( )

—
( )

4
~sf

36(0.615 + z)

where 5 is the separation between graphite layers
(= 0.335 nm), p, is the number density of carbon atoms
in graphite (114 nm ), and o.,f and e,f/k are the solid-
Auid Lennard-Jones parameters (0.3605 nm and 64.4 K,
respectively [17]). Note that this potential is a function
only of the distance z from the wall, and does not include

coarse grained feedback (flux averaged over the previous
1000 time steps) was found to be essential in order to
avoid the flux diverging to infinity.

It is vital to maintain the system at the correct constant
temperature to ensure that transport of matter is due to
chemical potential gradients and not to thermal gradients
[1,2]. To implement this the simulation box was divided
into 20 sub-boxes in the flow direction and the kinetic
energy in each sub-box was kept constant using a Gauss-
ian constraint in the leapfrog scheme [16]. The stream-

ing velocity does not contribute to the temperature and
must be subtracted from the x component of the veloc-
ity vectors prior to thermostating, but as discussed above
this quantity is not known accurately during the simula-
tion. For situations where the streaming velocity is much
smaller than the molecular velocity, subtracting a coarse
grained average streaming velocity caused negligible er-
rors. Conversely, if the streaming velocity is comparable
to the molecular velocity, it is possible only to thermostat
in the coordinate directions normal to the flow, the tem-
perature in the flow direction being controlled by molecu-
lar relaxation among the degrees of freedom.

We examined both specular and diffuse reflection wall
conditions [8]. The diffuse condition was implemented

by reselecting the velocities parallel to the wall from a
Maxwell-Boltzmann distribution after collision (this also
augments the temperature control), leaving the dynamics
of the normal component unchanged. The particle was
deemed to have hit the wall when (i) it was in the repul-
sive region of the potential, and (ii) the velocity normal
to the wall reversed its sign between time steps. A fuller
discussion of the implementation of the diffuse condition
for a continuous wall potential is given elsewhere [17].

The fluid was modeled as Lennard-Jones particles, with
pair interactions between particles separated by r;j given
by
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TABLE I. Summary of results for simulations at temperature kT/e = 2.0, pore size H/rr =
2.5, and width (y direction) W/rr = 10, for diffusely reflecting walls.

exp(P p, )A '
(sink)

0.0020
0.0020
0.0020
0.02
0.02

po
(sink)

0.1117
0.1117
0.1117
0.2845
0.2845

exp(P p, )A
(source)

0.0021
0.0035
0.0035
0.03
0.03

P cT

(source)

0.1162
0.1593
0.1593
0.3076
0.3076

13.3
13.3
20.0
13.3
20.0

Jo'(m/e) 'i'

3.0 X 10-4
3.2 X 10--'

2.3 X 10-'
3.9 X 10-'
2.4 x 10--'

any graphitic surface structure. The total adsorbate-pore
potential is the sum of the interactions from both walls.

The simulations contained between 150 and 400 part-
icles and were run for about 4 ns. Each run took
approximately 170 h of CPU time on a Silicon Graphics
r4000 workstation in the Department of Chemistry at
Imperial College.

The results from the simulations described in this work
were compared with results from EMD calculations for
the same model, given in Ref. [17]. Simulations using a
specular wall condition gave ftuxes about one and a half
orders of magnitude higher than would be predicted from
the transport diffusivities. Difficulty was experienced
in obtaining accurately converged cruxes with this wall
condition. In the remainder of this Letter we report
results for the diffuse wall condition and a pore of width
0/o=2. 5 at a .temperature of kT/e = 2.0. Details of the
runs are summarized in Table I. Figure 2 shows a plot of
pore concentration versus distance along the pore (in the

0.17

0.16

flow direction) for run 2. The volume used in the cal-
culation of concentration uses the carbon atom to carbon
atom distance, 0, between the two opposite pore walls
which includes a certain amount of dead space due to the
physical size of the wall atoms. The concentrations in
the control regions are approximately constant, except at
the ends of the simulation box where the concentration
falls to zero as the particles disappear into oblivion.

Figure 3 shows the z velocity averaged over the How
region (bars), and the average pore density, both as
functions of distance from the pore wall in run 2. The
velocity profile shows an approximately parabolic profile
with no evidence of significant slip. This compares with
the work of Hannon, Lie, and Clementi [3] who observed
slip in a simulation using diffuse reflection and hard
walls. The attribution of slip in their simulation to the
"absence of any attractive force between the walls and the
molecules to offset any attractive intermolecular forces"
is consistent with this work since our simulation contains
an attractive wall-adsorbate interaction.

Figure 4 shows Aux plotted against average gradient for
the five runs in Table I. The points (circles) from runs 1,
2, and 3 all fall on a straight line passing through the
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FIG. 2. Density profile along the How direction for a pore
of width H/o. = 2.5, temperature kT/e = 2.0. Length of
flow region: l/o. = 13.3. Source region chemical poten-
tial: exp(Pp, )A ' = 0.0035. Sink region chemical potential:
exp(P p. )A ' = 0.0020. The vertical and horizontal broken
lines indicate the boundaries of the Aow region, and the mean
source and sink densities, respectively.
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FIG. 3. Average density (---) and velocity [v' = u(m/e)'i']
profile (bars) in the flow region as a function of distance from
the pore walls. Same conditions as Fig. 2.
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not clear a priori that it would be found; the method has
obvious potential in determining nonlinear transport coef-
ficients under very high gradients [10]. Having demon-
strated the viability of this NEMD scheme, we plan to
study nonlinear transport behavior in future work as well
as exploring the effects of temperature and pore size.

This work was funded by the European Union and
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No. BREU-CT92-0568.

0.000

0.000 '

0.000 0.000 0.002 0.003 0.004

. AUthors to whom correspondence should be addressed,

dpldx(cz )
FIG. 4. Flux [1" = 1o'(m/e) 'I'] vs concentration gradient
for a pore of width H/o. = 2.5, at temperature kT/e = 2.0.
Average pore density: per' = 0.136 (), po' = 0.296 ( ~ ).

origin. Similarly the points corresponding to a higher
pore density (squares) from runs 4 and 5 fall on a different
straight line passing through the origin. Fick's law [8]
therefore appears to be obeyed, within the errors of the
flux calculations. Measurement of the gradients give
diffusion coefficients in reduced units (Dm'/ e '/ o') of.
1.06 and 2.27 corresponding to the lower and higher pore
densities, respectively. By comparison the EMD results
for transport diffusion from Ref. [17] (qv) give reduced
transport diffusivities of 0.48 (corresponding to pcr3 =
0.135) and 0.63 (corresponding to po. 3 = 0.29). The ratio
of the NEMD coefficients to the EMD coefficients are 2.2
at density po.~ = 0.135 and 3.6 at density po. 3 = 0.29.
This is in good qualitative agreement with Maginn, Bell,
and Theodorou [9] who observed, for methane in silicalite
at 300 K, that the ratio of NEMD diffusivity to EMD
transport diffusivity was always greater than unity and
increased with pore filling. The differences are attributed
to the increasing importance of cooperative (viscous)
effects.

The chemical potential gradients simulated here are
considerably higher than anything likely to be encoun-
tered in an experimental situation. For example, run 2
corresponds to a pressure drop of approximately 35 atm
across a 50 A length of pore; nevertheless a linear re-
lationship between Aux and gradient is observed. The
method does not intrinsically require linearity, and it was
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