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Two-Electron Correlations in e+ H e+e+p Near Threshold
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We present an ab initio calculation of the ionization cross section of atomic hydrogen near threshold
with precision that compares excellently with the Shah-Elliot-Gilbody experiment [J. Phys. B 20,
3501 (1987)]. This fills the gap between theory and experiment down to 0. 1 a.u. above threshold,
complementing the recent spectacular work of Bray and Stelbovics [Phys. Rev. Lett. 70, 746 (1993)].
The angular momentum distributions of the secondary electron display an evolution in correlation
patterns toward the threshold.

PACS numbers: 34.50.Fa, 34.80.Dp

Electron-impact ionization of hydrogen is one of the
most fundamental processes involving one heavy and two
light particles in disintegration without charge transfer.
Its particular simplicity allows one to estimate the or-
der of magnitude of the total cross section readily [1].
Nonetheless, theory has been considered largely incom-
plete because theoretical methods [2,3] could evaluate
cross sections with a far less precision than can the ex-
periment [4]. A terse historical account of this can be
found in the recent Letter by Bray and Stelbovics that
has succeeded in bridging this long-standing gap from
intermediate to high energies by means of the convergent
close-coupling (CCC) method [5]. However, they left a
gap on the low-energy side unresolved. The current tech-
niques are well suited to the study of threshold ionization
whereas the CCC method is not, though an enlargement
of the basis set might as well improve the convergence
of the CCC method even at low energies. The present
work investigates the low-energy region rather close to
threshold within the framework of the time-independent
scattering theory. Throughout this Letter, we use atomic
units, i.e. , 1 a.u. of length = 5.29 X 10 " m (Bohr ra-
dius ao) and 1 a.u. of energy = 27.2 eV.

For clarifying the spirit, let us employ an index K =
1/$2~E~, an analog of the single-electron wavelength, for
both below and above threshold. Here and throughout,
E is measured from the threshold so that K represents
the distance in energy from the threshold and serves as a
rough measure of the spatial range where the two-electron
correlation [6] is important; the characteristic distance as-
sociated with the correlation is of the order of K accord-
ing to Wannier [7]. The energy range may be divided
into three regions. The high-energy region (~ (( 1) is
where the perturbative treatment yields moderately reli-
able results. As a matter of fact, the controversial ratio
of the single-to-double ionization of He by photon impact
at K « 1 appears to be reasonably well represented by
perturbation theory [8]. Here, the electron-electron cor-
relations occur at rather short mutual distances during a
short time interval, thus the two electrons may be consid-

ered largely independent. The low-energy region (~ ~ 1)
is, on the contrary, where the correlations become partic-
ularly important because the incident electron has ample
time to see the detailed level structure of the target atom;
the target in turn has ample time to respond to the electric
field exerted by the incident electron. Here, the distor-
tion of the two-electron wave function reaches such a de-
gree that the mixing of a large number of configurations is
needed, and a nonperturbative scheme must be employed.
The intermediate-energy region (sc —1) contributes to the
major portion of the energy-integrated cross section. Re-
garding this region by including a number of configu-
rations allows an improvement over perturbation theory
[5]. The interest of the present work is in the moder-
ately low positive-energy region where K —3 and where
achieving convergence by configuration mixing using a
separable basis set shows a sign of difficulties. Ironically,
the cross section in this low-energy region is very small,
making it particularly difficult to evaluate the most inter-
esting physical quantities such as the threshold exponent,
because they are influenced by the long range correlations.
In this regard, the situation is analogous to second order
phase transitions; there the correlation length diverges to-
ward the critical point. The numerical determination of
the critical exponents requires to encasing an ever larger
volume.

Another facet of the ionization near threshold is our un-
satisfactory understanding of the quantum-classical cor-
respondence in the two-electron atom. It has not been
long since the comprehensive picture of doubly excited
states emerged from the molecular classification of angu-
lar correlations [9,10] combined with Lin's nomenclature
of the radial correlation patterns [11]. Surprisingly, the
moleculelike level patterns persist even up to K —6 in
both He [12] and H [13], whereas the recent rejuve-
nation of the classical dynamics study and semiclassical
quantization [14,15] anticipates occurrences of irregular-
ity due to instability. Because Wannier's threshold law
[7] for the total ionization cross section was first derived
on the basis of the dynamical instability of a particular
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class of trajectories that travel astride the potential ridge
at r] = —r2, the regularity of the quantum spectra slightly
below threshold is an apparent mystery [16]. Examining
the quantum mechanics of the near-ionization region is
extremely intriguing from this viewpoint.

As mentioned earlier, in representing the ionization
process near threshold we need good basis functions adap-
tive to various distortions caused by strong correlations.
For this precise reason, we employed the hyperspherical
close-coupling (HSCC) method in our preliminary work
for ionization [17], using the Poet-Temkin (PT) s-wave
model [18] in which the angular momenta of both elec-
trons are limited to 0, namely the s2 configuration. The
hyperspherical coordinates make the two-electron atomic
SchrOdinger equation locally quasiseparable,

1 -2 1 -2 1 1 1
H = ——V' ——V' ————+

rl r2 I rl r21

1 d Ad(R 0)
2 dR2 2R2

where the local adiabatic Hamiltonian 9f,d;, depends on

the hyperradius R = I"] + r2 only parametrically, and
0 = in = arctan(ri/rq), ri, i2) represents the rest of the
coordinates symbolically. The symbol is employed
here to note the rescaling of the wave function
to R / cosn sinn%'. The HSCC method exploits basis
functions [4~(R;0)) that are defined by the adiabatic
eigenvalue problem,

cl~ l2
(rl i r2) fp(~ ( 1)4e'lp(r2) Yl~ IpLM (rl r2) (ri —r~),

nates. Here, we introduce a new version of projection
which turns out to be simpler and more convergent [19].

Regarding the asymptotic region, we need to recall
that unlike the two-body problem there exists no ana-
lytically expressible asymptotic solution that can cover
every possible configuration, namely, (r~ ~, r2 ( ~),
(r& ~ ~, r2 ~), and (r& ~, rz ~). Only for the
first two configurations approximate solutions are known
[20]. This fact articulates an inherent difficulty of the
three-body disintegration problem. Nonetheless, what is
required of the asymptotic solutions is to represent the
incoming-wave boundary condition as well as to normal-
ize the ionization fIux. The former is straightforward
while the latter at first appears to require a priori know1-
edge of some analytical asymptotic solutions. However,
we can argue such a concern away as follows. Suppose
we enclose the internal region with a large enough box
defined by a hypersphere of radius R = R so as to con-
tain all the dynamical information therein. At R ) R the
asymptotic solutions are represented by the linear combi-
nation with the following delimited solutions in which the
effect beyond the monopole term of the electron-electron
interaction is presumed negligible,

A„;,C„(R;0) = U (R)a (R;n),

so that the basis set is adiabatically optimized to the local
potential field and forms a complete orthonormal set. The
method then expands the solutions of the two-electron
atomic Schrodinger equation in a piecewise diabatic way,
namely,

'lj'„(r), r2) = g F„„(R)4,(R;;0),

where the index n labels the solution and R ~ [R;—
h, R; + h] for some reasonably chosen values of R; and
h. The coefficients F„„(R) satisfy a set of coupled or-
dinary differential equations in the form of standard
close-coupling equations amenable to various numerical
schemes. A strength of the HSCC method is that even
an expansion over a moderate number of channel func-
tions yields well-converged solutions in the interval R E
[O, R ] where the upper radius R is finite. This is con-
vincingly demonstrated by Tang et al. [12] in the case of
photoionization of He. However, one fundamental prob-
lem with the method is that the adiabatic basis functions
do not correspond to the three disintegrated particles even
in the asymptotic region where R goes to infinity. Thus,
in Ref. [17],we extracted the ionization amplitude by pro-
jecting the internal HSCC solutions onto the asymptotic
solutions represented in the independent particle coordi-

where fkl pertain to the outgoing and incoming spherical
waves. We note that on account of the obvious symme-
try of the problem, we limit our subsequent considera-
tions to the domain r~ ~ r2. Here, @,I, (r2) represents the
target state and satisfies the Coulomb Schrodinger equa-
tion with the boundary condition at r2 = r = R /~2,
(8/Br2 —b/r2)P, ~, ~„,=„. = 0, where b is an arbitrary
constant whose specific value is irrelevant to the phys-
ical observables provided r is taken sufficiently large.
As a result of this boundary condition, the continuum en-
ergy spectrum of the target states is inevitably discretized.
Then we exclude the region where r2 is greater than r
This does not mean that the excluded region is entirely
out of our consideration. It would mean, instead, we con-
structed wave packets by integrating over discretized en-
ergy (or momentum) intervals so that the wave packets
localized near the proton are formed. Consequently, the
scheme is able to resolve details in energy as well as in
momentum domains that are no finer than the discretized
energy as well as momentum intervals.

Now, the internal and asymptotic solutions are matched
across the arc defined by R = R, demanding the
equality of the logarithmic derivative so that the linear
combination coefficients of the delimited solutions are
uniquely determined. From these coefficients the 5
matrix S, t, ~, ,t, I, (E), where e and e' pertain to the energy
index of the target state, is algebraically calculated. The
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solution has the asymptotic form

+2) + g f o '~' ~' (+I ~ +2)~ 't', I', i, t %) (~)
ll, l2

0.4

Once the S matrix is obtained, the total cross section,
energy-differential cross section, etc. follow readily from
standard formulas with the understanding that we replace
the integration with respect to e by the summation with
the appropriate quadrature weights.

Let us move on to the demonstration. First, tak-
ing the PT model as an example, we show that our
method achieves an excellent convergence over a wide
energy range. Figure 1 shows the model total ionization
cross section versus energy on a log-log scale calculated
with 60 channels, and R was varied between 50 and
200 a.u. till convergence was achieved within a few %.
This result confirms the convergence of the calculation by
Bray and Stelbovics (cf. Fig. 1 in Ref. [21]). Stated dif-
ferently, this model calculation suggests that for a given
angular configuration defined by a specific pair of angu-
lar momenta (lt, l2), the HSCC method can represent the
radial degrees of freedom very well over a wide energy
range. Next, we focus our attention on projectile ener-
gies from 0.5 to 0.9 a.u. , i.e., F. = 0—0.4 a.u. We show
in Fig. 2 the total ionization cross section o. of the real
process e + H(ls) ~ e + e + p as well as o/E which.
is a more sensitive function of correlations. The number
of channels employed for expansion is listed in Table I,
and the matching radius R was varied between 100 and
200 a.u. The result is compared with that of Bray and
Stelbovics [5] and that of Callaway [3] as well as to the
Shah-Elliot-Gilbody experiment [4]. The relative differ-
ence in o- between our result and the experiment is within
a few % from E = 0.1 to 0.4 a.u. However, as the energy
gets closer to threshold (E ~ 0.1 a.u. ), the largest differ-
ence reaches 20%. The difference in cr may be traced, on

~ ~ I ~ ~ ~ I j ~ I I ~
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the one hand, to the experimental difficulty of measuring
slow electrons, and, on the other hand, to the theoretical
difficulty of resolving the details of the continuum states
which are represented by discretization; the states so dis-
cretized at a fixed R get too coarse to resolve the cross
section as E ~ 0. As for the function o/E, our r. esult is
smooth whereas the CCC result of Bray and Stelbovics
shows a noticeable fluctuation. Note, however, the rapid
decline toward threshold in our result reflects merely the
matching at a finite R to the approximate asymptotic
solutions. That is, it is not an indication of Wannier s
threshold behavior. Figure 3 shows the angular momen-
tum distributions of the secondary electron [I2 in Eq. (4)]
at E = 0.97, 0.419, and 0.0515 a.u. One notices that the
transition is more dipolelike (Al2 = 1) at higher ener-
gies which complies with our understanding. The dis-
tribution does smear out toward the threshold though the
dominance of the dipole transition maintains even at the
lowest energy we examined. Should its dominance be
completely smeared out at even lower energies? What will
happen to this angular momentum distribution when the
Wannier threshold law sets in? We leave these questions
for future investigations.

Wannier's threshold law o. ~ E"2 [7] has not been
demonstrated by any fully quantum mechanica1 treatment.
Going closer to threshold so as to examine the cusp of the

FIG. 2. (a) Total ionization cross sections of the real process
versus energy. Solid line represents present work, open
circles experimental data from [4], crosses the convergent
close-coupling method (private communication [5]), and filled
triangles the pseudostate expansion method [3]. (b) rr/E, a
function that reveals the details near threshold. Filled circles
represent present work, and the other symbols are as in (a).
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TABLE I. List of p, ,„, the maximum number of channels
coupled. Regarding the labeling of states, 'S' means, for
example, that total orbital angular momentum L = 0, total spin
S = 1, and the parity is even.

FIG. 1. Total ionization cross section (o) of hydrogen using
the Poet-Temkin model [(s2)'5']. Solid line represents present
work, and filled diamonds represent the convergent close-
coupling method [21]. P max

1,3Se 1,3po 1,3De ],3F. 1,3Ge ' H 1,3Ie

95 154 188 187 166 181 194
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FIG. 3. The angular momentum distributions of the secondary
electron (a.„/o.) at E = 0.97, 0.419, and 0.0515 a.u. , where o.„
represents partial ionization cross section.

Cvejanovic-Read experiment [22] would require one to
extend R to thousands of atomic units [23]. Sustaining a
numerical stability to such a distance is beyond the scope
of any ab initio theoretical method to date. However, our
method is promising because of its unbiased radial basis
functions.

To conclude, we have succeeded in evaluating the
low-energy ionization cross section with a precision
comparable to that of the Shah-Elliot-Gilbody experiment
down to -0.1 a.u. Even at these energies, the angular
momentum distributions of the secondary electron have
shown the dominance of the dipole transition. The
adiabatic basis functions adaptive to strong correlations
should become progressively important for exploring even
lower energy regions.
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