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Late-Time Tail of Wave Propagation on Curved Spacetime
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The late-time behavior of waves propagating on a class of curved spacetimes, including
Schwarzschild, is studied. The late-time tail is not necessarily an inverse power of time. Our work
extends, places in context, and provides understanding for the known results for the Schwarzschild
spacetime. Analytic and numerical results are in excellent agreement.
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Waves propagating on curved spacetime develop
"tails." A pulse of gravitational waves (or other massless
fields) travels not only along the light cone, but also
spreads out behind it, and slowly dies off in tails [1—6].
This tail phenomenon is fascinating theoretically, and has
also been found in post-Newtonian calculations to have
possibly observable secular effects on the phase of the
orbit of inspiralling binary systems [7).

For asymptotically late times this tail often has a par-
ticularly simple behavior, namely, it decays as an inverse
power in t. Detailed analyses have been carried out for
the Schwarzschild geometry, using both analytic [2,3,5,6]
and numerical techniques [2,4]. These works are based on
the Regge-Wheeler perturbation formulation, in which the
propagation of linearized gravitational, electromagnetic,
and scalar waves is described by the Klein-Gordon (KG)
equation

DP(x, t) —= [8, —8, + V(x)] P(x, t) = 0,
with V(x) describing the scattering of P by the background
geometry. The late-time tail has been explained in two
different ways: in terms of a branch cut in the Green's
function in the frequency plane [6],or in terms of scattering
from large radius in the Schwarzschild geometry [2,3].

With the power-law tails in Schwarzschild spacetime
well established (although a thorough understanding, es-
pecially at timelike infinity, is not complete [8]), attention
has been widened to more general situations. Tails in
a Reissner-Nordstrom hole have been studied [3]. More-
over, since the late-time tail comes from scattering at large
radius in the Schwarzschild case [2], it has been suggested
that power-law tails would develop even when there is no
horizon in the background [3], implying that such tails
should be present in perturbations of stars, or after the
collapse of a massless field which does not result in black
hole formation. In [4], the late-time behavior of scalar
waves evolving in its own gravitational field or in gravi-
tational fields generated by other scalar field sources was
studied numerically. Power-law tails have been reported
for all these cases in numerical experiments, though with
exponents different from the Schwarzschild case. These
interesting results call for a systematic study of the late-

time tail in general nonvacuum, time-dependent, and non-
linear spacetimes.

There are several interesting questions in a general
analysis. Is the tail always a power in t? What de-
termines the asymtotic behavior —the branch cut in the
Green's function or the asymptotic form of the poten-
tial —and how are the two related? What determines the
magnitude and the time dependence of the tail, and do
these depend on local geometry and/or the presence of a
horizon?

In this Letter, we study these questions using Eq. (1)
with a broad class of V(x). Our work extends, and places
in context, the known results for linearized waves on spe-
cific time-independent background geometries which are
asymptotically Oat. More general cases, involving, for ex-
ample, nonlinear waves and time-dependent backgrounds
[4], would need to be dealt with separately.

We shall first present numerical simulations of the late-
time behavior for various V(x), showing that the decay is
not necessarily an inverse power of t. Another interesting
observation is that when the parameters of the potentials
are continuously varied, the behavior of the late-time
tail can change discontinuously. We then determine
analytically the amplitude and the time dependence of the
late-time tail in terms of the strength of the branch cut in
the Green's function. The relation between the cut and
the asymptotic structure of the potential is obtained. We
establish that the local properties of the potential affect
only the magnitude but not the time dependence of the
late-time tail.

We study numerical evolutions of P(x, t) given by
Eq. (1) for various V(x). The variable x is related to,
but not the same as, the circumferential radius r [9]. For
a nonsingular metric, e.g. , that of a star, r H (0, ~) maps
into x H (0, ~). For a metric with an event horizon at
r = rp (with g„= 0 at rp [9]), then r E (rp, ~) typically
maps into x H (—~, ~) (the tortoise coordinate). The
evolutions shown here are for the half-line x E (0, ~)
case, with boundary conditions P = 0 at x = 0 and
outgoing waves for x ~ +~. The full-line case [x E
(—~, ~), with outgoing wave boundary conditions for
~x~ ~] is basically the same.
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FIG. 1. In($~ vs lnt, for several power-law potentials. (a)
l = 0, n = 3; (b) l = 1, n = 2.9; (c) l = I, n = 3; (d) l =
1, n = 3.1. Solid lines are numerical evolutions from generic
initial data while dashed lines are analytical results. They are
indistinguishable for lnt ) 8. To make the four sets of lines
stagger, vertical shifts have been applied: (b) downwards by
6.0; (c) downwards by 12.0; (d) downwards by 23.0.

FIG. 2. K~g~t2'+ vs lnt for several logarithmic potentials
(a) l = 0, n = 3; (b) l = 1, n = 2.9; (c) l = 1, n = 3; (d)
l = 1, o. = 3.1. Solid lines are numerical results while dashed
lines are analytical results. They are indistinguishable for 1nt ~
9.5. For clarity, the data are multiplied by a constant K with
(a) K = 10 9; (b) and (c) K = 5.6 X 10 '"; (d) K = 5.86 X
10—10

In the following we consider two classes of V(x): po-
tentials which go as a centrifugal barrier l(l + 1)/x (l
is an integer) plus V(x), with V(x) being (i) xo /x
("power-law potentials" ) or (ii) (xo /x ) ln(x/xo) ("loga-
rithmic potentials" ) when x ~ +~ for some xo. The loga-
rithmic potential includes the Schwarzschild metric as a
special case. The evolution is basically independent (see
below) of the initial data. The cases reported here use
Gaussian initial data for @ and dP/dt.

Figure 1 shows In~/~ vs lnt at some fixed point x
for several power-law potentials. Solid lines represent
the numerical evolutions; earlier times are suppressed for
clarity. After some quasinormal mode ringing, they ap-
proach and coincide with the analytic results (to be de-
rived below) representing power-law decays t ~, where
p, = 2l + n except that in case (c) p, jumps discontinu-
ously to 2I + 2u —2. Such jumps occur whenever n is
an odd integer less than 2l + 3. (We assume throughout
that the initial d@/dt is not exactly zero; otherwise the
exponents p, increase by 1, also shown below. )

Logarithmic potentials often lead to logarithmic late-
time tails. To exhibit this behavior, Fig. 2 shows ~@ ~t

'+

vs 1nt for several logarithmic potentials. The numerical
evolutions approach and coincide with the analytic results
which represent decays in the form of t ~(lnt)p, with p, =
2l + n, and p = 1, except that p jumps discontinuously
to 0 (and the late-time tail becomes a power law) in case
(c); such jumps again occur when n goes through an odd
integer less than 2l + 3.

Table I summarizes these and other cases studied but
not shown here. In all these examples, o. is taken to be
larger than 2 (n ~ 2 will be discussed elsewhere).

TABLE I. Behavior of late-time tails for potentials going as
l(l + 1)/x' + V(x) when x

V(x), x
n 2

x0
Xn Odd integer (2l + 3

All other real u
Odd integer (2l + 3
All other real n

t l", p, ~21+ a
,-(2I+~)

t -(2&+~)

t ("+~) in(

We first present a heuristic picture, and then state
the necessary modifications. Consider a wave from a
source point y reaching a distant observer at x. The late-
time tail is caused by the wave first propagating to a
point x' » x, being scattered by V(x'), and then returning
to x, arriving at a time t = (x' —y) + (x' —x) = 2x'.
Thus at late times P ~ V(x') = V(t/2). In particular, if
V(x) —x (lnx)P, then one expects the late-time tail to
be —t (lnt) P .

This picture requires two modifications. First, a cen-
trifugal barrier, corresponding to free propagation in three
dimensions, does not contribute to the late-time tail, so
that it is the remainder of the potential V(x) that mat-
ters. For V(x) —x (lnx)P, the late-time tail turns out
to be t t '+ )(lnt)~. The suppression by a factor t 2', at
least in the case n = 3, is known for specific black hole
geometries [2,3]. Second, if n is an odd integer less than
2l + 3, the leading term in the late-time tail vanishes. For
P = 0, the next leading term is expected to be t
while for P = 1, the next leading term is t ~~'+ without
a (lnt) factor.

Next we present a full analytic treatment for the half-
line problem; modifications for the full-line case are
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straightforward. The evolution of @(x,t) described by
Eq. (1) is

@(x,t) = dy[G@(y, O) + GP(y, O)]

for t ) 0, where the retarded Green's function G(x, y; t)
is defined by DG = 6(t)B(x —y) with G = 0 for t ( 0
and the outgoing wave boundary condition as given for
P above.

The Fourier transform G satisfies

D(tp)G —= [—tp2 —8 + V(x)jG(x, y; tp) = 6(x —y)

(3)

and is analytic in the upper half ~ plane. Define auxil-
iary functions f and g by D(tp) f(tp, x) = D(tp)g(tp, x) =
0, where g satisfies lim, [e '" g(tp, x)] = 1, and f
satisfies f(tu, x = 0) = 0, f'(tp, x = 0) = 1 [10] for the
half-line problem, and lim, [e'"'f(cp, x)] = 1 for the
full-line problem. In terms of f and g, and henceforth as-
suming y ( x, G(x, y; cp) = f( spy)g( ,tp)x/W( )cp, where
the Wronskian W(cp) = W(g, f) = g(df/dx) —f(dg/dx)
is independent of x. Now express G in terms of G and,
for t ) 0, distort the contonr for the Fourier integral to a
large semicircle in the lower half cu plane. One therefore
identifies three contributions to G, as follows.

First, the integral on the large semicircle can be shown
to vanish beyond a certain time tp(x, y) = O(x), and does
not affect the late-time behavior [11].

Second, at the zeros of the Wronskian W(cp) at tp =
tp, , j = +. I, ~2, . . . on the lower half plane, f and g are
proportional to each other, and each of them satisfies
both the left and the right boundary conditions. Hence
they are quasinormal modes (QNM's), and their collective
contribution G~ vanishes exponentially at late times.
[The case where G = G~ (QNM's being complete) has
been discussed in detail [11].]

Finally, there may be singularities of f and g in cp,

which lead to the late-time tail. If the potential V(x)
has finite support, say on (O, a), then one can impose
the right boundary condition at x = a+. Integrating
through a finite distance with a nonsingular equation to
obtain g(cp, x) cannot lead to any singularity in tp. It
is not surprising that the same holds if V(x) vanishes
sufficiently rapidly as x ~ +~ [11,12]. However, if V(x)
has an inverse-power type tail, then g(cp, x) will have
singularities on the negative Imtp axis (see below), in

the form of a branch cut, as in the Schwarzschild case
[6]. The cut extends to tp = 0, and its tip controls the
late-time behavior. For the half-line problem, f(tp, x) is
integrated from x = 0 through a finite distance, and hence
does not have any singularities in cu. For the full-line
case, f is dealt with in the same manner as g. In all cases
of interest, the tail of V(x) as x ~ —~ is either faster than

any exponential or precisely exponential. For the former,
f(co, x) has no singularities in tp, while for the latter, there
will be a series of poles, but at a finite distance from

cu = 0. In either case, the spatial asymptotics as x
has no bearing on the late-time behavior.

It then remains to study the spatial asymptotics as
x +~, and the consequent singularities of g. First
consider a power-law potential with l = 0. Applying the
first Born approximation to D(tp)g = 0 and starting with
e' as the zeroth order solution, it is readily shown that

where

I(tp, x) =

g(cp, x) = e' ' —I (tp, x),

, since(x —x')

(4)

G(x, y;t ~) =—

where

f(0, x)f(O, y) C(l, n)F(n)
2

go

C(l, n) =
L
—1

N 2J 3
A' + 1 + 2J

i = 1, 2, . . . , (9)

and C(i, n) = 1 for i = 0, with F(n) = 2(2xp) 2I (2l +
n)/I (n), and gp

—= Iim„p[(imp)'W(g, f)], which is finite
[12] and reduces to g(0, 0) for l = 0. The extra power of

in the definition of go is responsible for the suppression
of the late-time tail by an extra factor of t ', so that in

general [unless @(y, t = 0) vanishes], @(x,t) —t
at late times. But there is an exceptional case: When o.

is an odd integer less than 2l + 3, C(l, n) = 0 and the
late-time tail vanishes in first order Born approximation;

[(—2itpxp) I (2 —n) + . ].a —1

The omitted terms denote a convergent power series in co.
(This form is valid only for nonintegral n; the integral
case can be obtained by taking a limit in the final result. )
The factor ( 2i tuxp—) causes a cut in G on the negative
Im~ axis. Thus, we have

f(0, x)f (0, y) 2 'xp
G x, y;t

g(0, 0)2 t

The late-time behavior is therefore @ = t generically
[unless P(y, t = 0) = 0].

Notice that the time dependence is determined solely by
the asymptotic form of V, while the magnitude, involving

f and g(0, 0), is sensitive to the local geometry, and hence
to the existence or otherwise of a horizon (in the full-
line case). Note also that the Born approximation, which
is strictly valid at very large x, has been used only
to evaluate an x-independent Wronskian; therefore the
results are exact at large t.

Next consider l 4 0. It is necessary to handle the
centrifugal barrier exactly, and to treat only V(x) by
using the Born approximation. The zeroth order solutions
are now Hankel functions rather than plane waves. A
somewhat lengthy calculation, along the same lines as
before, then leads to
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higher order approximations representing multiple scatter-
ings from asymptotically far regions give the next term
going as -t

Generically the late-time behavior is linear in the
potential (first Born approximation). By applying —8/Ba
on the corresponding power-law potential, we obtain from
Eq. (8) that for logarithmic potentials

f(O, x)f(O, y) 8 C(l, n)F(rx)

The leading terms are t 2'+ )(c lnt + d), except that c ~
C(l, n) vanishes when n is an odd integer less than 2l +
3. The Schwarzschild case (n = 3) with l 0 0 belongs
to this exception; as is well known [2—6], the late-time
behavior is a power law with exponent —(2l + 3), and no
lnt factor.

Analytic results for @ at large t can then be obtained
from Eqs. (7) and (8) with no adjustable parameters
[except for case (c) in Fig. 1; see below], and are plotted
as dashed lines in Figs. 1 and 2. The agreement is perfect.
The exceptional cases (c) deserve mention. For case
(c) in Fig. 1, the leading term vanishes, and the dashed
line shown represents the next leading term arising from
multiple scattering, whose time dependence is determined,
but whose magnitude has been left as an adjustable
normalization. For case (c) in Fig. 2, the vanishing of the
leading term implies that the asymptotic slope should be
zero (i.e., no lnt, but only a pure power, whose magnitude
is determined), and this indeed agrees with the numerical
results, with no adjustable parameters. These results are
for timelike inanity. Results for null inanity will be given
in detail elsewhere.

In conclusion, we have achieved an analytic under-
standing of the late-time tail in such systems, with asymp-
totic formulas agreeing perfectly with numerical results.
The late-time behavior is due to the tip of the cut in the
frequency plane, which arises from scattering at large ra-
dius. For a potential that is a centrifugal barrier plus
-x (lnx)P (a ) 2, P = 0, 1), the late-time tail is gener-
ically -t ~2'+ )(lnt)p. The possibility of a logarithmic

factor in the leading late-time behavior appears not to be
widely known. Moreover, the case where u is an odd
integer less than 23 + 3 is exceptional, and interestingly
enough the most familiar Schwarzschild case belongs to
this exception. We are at present extending our calcu-
lation to more general cases (e.g., when the potential
has time dependence, using time-dependent perturbation
theory).
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