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Light Propagation and Disorder Effects in Semiconductor Multiple Quantum Wells
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Propagation of femtosecond light pulses in semiconductor multiple quantum wells with interface
roughness is investigated theoretically and experimentally. It is shown that the nonlocal susceptibility
causes exciton broadening, decreases the relative magnitude of the ls and 2s resonances, and leads
to multiple reflections. The time resolved signal exhibits modulations that are sensitive to the barrier
thickness. The absorption spectrum and time dependence of the beat frequency are inAuenced by static
disorder.
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Propagation of light pulses in semiconductor het-
erostructures, in particular, multiple quantum well struc-
tures (MQWS), is a problem concerning a wide range of
applications in modern optics. Examples are light trans-
mission in waveguides and semiconductor lasers, or any
femtosecond optical experiment investigating the optical
response of quantum confined systems. In this Letter, we
theoretically and experimentally investigate propagation
in the growth direction of a semiconductor multilayered
structure. The results show that a complete description
of propagation in a heterostructure must simultaneously
treat the effects of the nonlocal susceptibility, Coulomb
interaction, and disorder. The experimental observation
cannot be theoretically reproduced if the different effects
are treated separately.

In optically thick bulk semiconductors, polariton effects
lead to slow propagation [1], beating [2], and pulse
breakup [3—6]. In heterostructures, the transmission
of ultrashort light pulses is sensitive to not only the
interactions between generated electronic excitations but
also to sample geometry, including structural disorder
(e.g. , well width Iluctuations).

Propagation in resonant dispersive media is typically
described using the slowly varying envelope approxima-
tion (SVEA). While this approach is justified in bulk
semiconductors where the dielectric function is spatially
homogeneous, in semiconductor heterostructures, which
have a nonlocal susceptibility, the SVEA does not hold
because the spatial dependence of the polarization is de-
termined by the geometry of the heterostructure and not
by the spatial dependence of the exciting light field. The
lack of translational invariance in the growth direction
means that momentum is not conserved in this direction.
This leads to a finite density of states for excitonic ra-
diative decay [7,8], thus increasing the exciton linewidth.
Furthermore, partial reflections play an important role
[9,10]. We show that, within linear response theory, the
problem of pulse propagation in an idealized semiconduc-
tor multiple quantum well structure can be solved analyt-
ically and thus provides a good example for investigating
the effects of nonlocality.

Realistic semiconductor heterostructures are generally
characterized by a certain amount of intrinsic disorder,
caused by imperfections of the interface separating the
epitaxial layers. We therefore include weak static disorder
in our analysis. The coupling of the relative and center of
mass (c.m. ) coordinates by the disorder potential is treated
using Green s function theory, allowing the inclusion of
the Coulomb interaction and static disorder on an equal
footing. Our calculations reveal characteristic features
in the transmitted pulse shape, which are also observed
in our femtosecond pulse propagation experiments in a
InGaAs/GaAs MQWS.

For our calculations we consider a multilayer struc-
ture consisting of N wells of average thickness I and
N + 1 barriers of thickness D —L. If z is the direction
of growth, the incident laser pulse is described classically
by a linearly polarized plane wave traveling in the positive
z direction with a frequency dependent amplitude Eo(to)
For technical simplicity we assume perfect quantum con-
finement conditions (infinitely high potential barriers) so
that the optical excitation, i.e., the interband polarization
P is completely localized within the wells. We can then
characterize each quantum well by a transmission coeffi-
cient T, a reflection coefficient R, and an absorption coef-
ficient n = (1 —]T( —)R)2)/2.

To compute T and R first for a single quantum well, we
write the solutions of Maxwell's equation for the barriers
as

Eo(co) [e'""' + R(to)e '""'] z ( —L/2, (la)
Eo(to)T(co)e'""' z ) L/2, (lb)

where ko is the wave vector of the incident light field in
the barrier. Then, within the quantum well, we expand the
polarization in terms of the confinement wave functions.
For sufficiently thin quantum wells this expansion can be
restricted to the ground state confinement wave functions
[11,12] P(z, to) = P2o(to) cos~(7rz/L), where P2o(co) has
to be obtained as the solution of the two-dimensional
electron-hole problem. As a consequence of the simple
analytical z dependence of P(z, to), Maxwell's wave equa-
tion can be integrated analytically. The two frequency
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dependent integration constants are determined assuming
continuity of the field amplitude and its first derivative at
the interfaces. We obtain

4m
F. (z, cu) = Eo(~)e'"" + P' (cu)f(z, cu), (2a)

f(z, ~) = [e'"" i cos (ko z) —1j
——].

-(,'..." [cos(koz) + cos(27rz/L)]

(2b)

for the electric field within the quantum well and

for the refiectivity and transmitivity of the well [13],with
d = ~(I —[1 —(27r/koL) ] '). Hence, the absorption
coefficient a = —Re(RT), showing that finite absorption
in a nonlocal situation requires nonvanishing reflection
and transmission.

So far our results are valid for arbitrary 2D polarization.
However, for the purposes of this Letter, we restrict the
analysis to the linear regime, where we can write

P' (cu) = dz dz'X(~, z, z')&(~, z) &(z —z'), (4)

with

g(~, z, z') = ——
) p, ) cos(m z/L) cos(~z'/L)—

L V

d R d R'(R, r = 0~(co + i6

—9-C.„) ' ~R', r' = 0),

and F(z, cu) is the solution of Eq. (2b). In Eq. (5), p, is the
dipole moment, R and r are the in-plane c.m. and relative
coordinates of the electron hole pair.

In the presence of interface roughness the exciton
Hamiltonian A„contains the center of mass kinetic en-

ergy, the excitonic part, and the disorder potential, i.e.,
the fluctuation of the confinement energy due to inter-
face roughness. This random potential can be character-
ized by its correlation function only, the average value
of the disorder potential is taken as zero. To account
for the Coulomb interaction, which we have taken purely
two dimensionally, we expand the susceptibility in terms
of the excitonic wave functions. Because the spot size
is usually large compared to the correlation length of
the disorder potential, all observed quantities are a con-
figuration average over many independent regions. It is
therefore sufficient to calculate the configuration average
of the linear susceptibility. For this purpose we apply
the self-consistent Born approximation, assuming a short-
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4i
Fo(cu)R(co) = —dP (cu) sin(koL/2), T(ur) = 1 + R(cu)

L
(3)

ranged correlation function for the well width fluctua-
tion (kL(R)AL(R'))„„q = 4Ao 2L6/7r46(R —R'). Here,
o. = vr2AL/2L3 is the standard deviation of disorder po-
tential and A is the mean cross section of the indepen-
dent regions. In our numerical evaluation we include four
bound excitonic states. Since the relevant disorder param-
eter for the c.m. particle scales with the spatial extension
of the excitonic states, the effects of disorder on the con-
tinuum states can be neglected.

Without disorder the exciton line shape is a Lorentzian
with width I = 6 + I „, where 6 is due to "pure dephas-
ing" processes such as scattering with other quasiparti-
cles and I „ is the radiative linewidth. It is interesting to
note that the radiative linewidth ( 'natural linewidth") in a
semiconductor heterostructure depends on the magnitude
of the in-plane momentum of the exciton. For bulk or sur-
face polaritons, only scattering at the crystal edges leads
to a radiative decay. However, perpendicular to the lay-
ers of a heterostructure, momentum conservation does not

apply and there is a finite density of states for excitons
with K~~

= 0 to emit photons and decay into the crystal
ground state. This leads to an intrinsic broadening of the
excitonic resonances [7,8].

For ko~ && 1 one can expand the solution
T = 1 + 2vrikog + O((kog)2) = exp(2vriko~) and n =
27rkolm(g) + O((ko~) ). Hence, in first order the ab-
sorption reduces to —ln(~T ~).

Because of multiple reflections, the transmission coef-
ficient T~ of a structure with N quantum wells deviates
from a simple power law T~ 4 T, since the radiative
coupling of the quantum wells is sensitive to the sam-
ple period. Hence, we have to use a transfer matrix to
compute R and T for a MQW from the single-well re-
sults. The problem becomes translationally invariant on
the length scale of the wavelength only if ko~ && 1 and
exp(ikoD) = 1. Then the transmitted pulse can be de-
scribed by an effective k vector corresponding exactly to
the solution obtained within the SVEA, where the medium
is replaced by an effective homogeneous medium with an
average susceptibility ~,tr(cu) = ~(cu)/D In this lim. it,
the effects of propagation effects are essentially the same
as in 3D [2]. Generally, however, one has to take the
strong frequency dependent reflection into account for the
proper analysis of MQW transmission experiments.

As an illustration of our results, we show in Fig. 1

the transmitted intensity ~T~ and the absorbed intensity
(A(' = 2n = 1 —(T(' —(R(~ as a function of frequency
(normalized to the bulk exciton binding energy) calculated
for a single 10 nm quantum well without disorder, using
6 = 0.2 meV [14]. On resonance, a large percentage of
the intensity is reflected, as can be seen from Fig. 1, where
the reflected intensity is the difference between the two
curves. From the width of the absorption spectrum, we
see that the effective radiative linewidth of the exciton is
approximately 0.7 meV. Because the oscillator strength
in a real quantum well is less than in our 2D model, this
is a upper limit to the excitonic radiative linewidth.
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FIG. 1. Transmitted intensity (solid line) and absorbed inten-
sity (dashed line) for a single GaAs quantum well without dis-
order.

Although measuring the transmission and reAection is
experimentally simple, it is very difficult to unravel the
relative linewidth contributions due to propagation from
those due to disorder. We therefore studied pulse propa-
gation in a MQW, providing a clear separation of the two
effects. The sample is a 20 period InppsGao92As/GaAs
quantum well [15]. The sample has 40 nm barriers and
the 10 nm InoaAs wells. As the light-hole transitions
are blueshifted by 30 meV due to built-in strain from
the lattice constant mismatch, the heavy-hole states are
isolated. At 5 K the linear absorption spectrum (in-
set Fig. 2) displays (i) a strong heavy-hole (hh) exci-
ton resonance at 1.455 eV with a 1.7 meV linewidth and
(ii) absorption due to heavy-hole —free-electron transitions
above 1.462 eV. The homogeneous linewidth, obtained
from transient four wave mixing (TFWM) experiments,
is 0.2 meV. Additionally, time resolved TFWM veri-
fies that the sample is inhomogeneously broadened [16]. z(z, r) = dco

e '~' ""'T (ru)F. (cu)

The binding energy of 7 meV is less than the 2D value
(16.8 meV) because of the finite extent of the wave func-
tion. Hence, comparison between theory and experiment
must be made carefully. Agreement can only be expected
if the overlap of the exciting light pulse with the absorp-
tion spectrum is qualitatively comparable.

The 110—120 fs [full width at half maximum (FWHM)]
incident pulses are nearly transform limited, with a
spectral width of 20—22 meV. (We have verified that the
slight chirp does not qualitatively change the results. ) The
measurements are performed in the low-density limit with
a 100 /Lm spot (much larger than the disorder correlation
length) and the transmitted pulse is time resolved via cross
correlation with a reference pulse in a second harmonic
crystal. These measurements are similar to earlier ones
where the density dependence was examined [17]. In
Fig. 2 the experimental results for several detunings
between the center of the pulse spectrum and the 1s
exciton resonance are shown. At all detunings the pulse
exhibits a long modulated tail and the modulation period
is quite small.

For comparison with the experimental results we show
in Fig. 3 the calculated cross correlation of the transmit-
ted pulse for various different detunings between the cen-
tral frequency and the 1s-hh-exciton resonance in a GaAs
MQWS with 20 layers without disorder (left) and with
weak disorder (right). Here, the amplitude of the trans-
mitted pulse has been obtained as

for g ~ ND, where Fp(ru) is the initial pulse, for which
we take a 100-fs (FWHM) Gaussian line shape. The in-
sets show the calculated transmission spectra per quan-
tum well, In[1 ( up)/cI ( r)]ru/ND. The excitonic resonances
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FIG. 2. Transmitted pulse measured in a 20 layer
InppgGap9&As/GaAs MQWS at a detuning of (i) 11.4 meV
(solid line) and (ii) 4.5 meV (dashed line) below the Is-hh
resonance and (iii) +1.5 meV below the band gap (dotted line).
Inset: Measured transmission spectrum.

Time (ps)

FIG. 3. Time resolved transmitted pulse in a 20 layer GaAs
MQWS at a detuning of (i) 3' below the is-hh-exciton
resonance (solid line), (ii) IEp below resonance (dashed line),
and (iii) 0.5Ep below the band gap (dotted line) Left: Without
disorder; right: With a weak disorder. Insets: Transmission
spectra.
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exhibit an additional broadening compared to the single
quantum well spectrum. This additional broadening is a
Fabry-Perot effect due to the distributed feedback in the
structure, whereas, as mentioned earlier, the broadening
of the single quantum well spectrum is an intrinsic feature
due to the breaking of translational invariance. Note that
without disorder the relative magnitudes between the 1s
and 2s resonances are much smaller than 27, as would be
predicted within the SVEA. The 1s excitonic resonance
has an asymmetric line shape, due to propagation effects.
In the presence of disorder, the 1s resonance is slightly
redshifted and has an enhanced asymmetry; the 2s reso-
nance cannot be resolved. The asymmetric line shape is
also observed experimentally.

The time resolved transmitted signal exhibits a long
modulated tail even if excitation occurs far below res-
onance. If the pulse center frequency is above the 1s
resonance, the interference of the 1s exciton and the ex-
citon continuum leads to a fast modulation of the trans-
mission tail. If excited below resonance, the period is
much longer. Since at this central frequency the pulse
has a negligible overlap with the continuum, the beat fre-
quency depends strongly on detuning as observed experi-
mentally. In the absence of disorder, the beat period
increases with increasing time as +t, as is the case in
a bulk crystal with a single excitonic resonance [2].
At all detunings, the modulation frequency is signifi-
cantly increased by static disorder and increases even
with increasing time, as is observed experimentally. In
both cases, the modulation period depends on the barrier
thickness due to multiple refiections. Thus, static disor-
der and propagation effects lead to qualitative modifica-
tions of the time resolved signal that are apparent in the
experimental result as a rapid beating. These modifica-
tions cannot be derived if Coulomb, disorder, or propa-
gation effects are treated seperately.

In summary, our experimental and theoretical investiga-
tions clearly show that both the spatially inhomogeneous
dielectric function and static disorder modify the absorp-
tion spectrum of a semiconductor heterostructure and lead
to characteristic features of the transmitted femtosecond
pulses. The lack of translational invariance and static dis-
order cause a broadening of excitonic resonances, and re-
jections at the interfaces lead to interference effects that
strongly modify the transmitted pulse shape. Since all ef-
fects act simultaneously, a correct interpretation of the ex-
perimental results requires an analysis, taking into account

the full geometry of the sample, including interface rough-
ness. Although we have only investigated pulse propaga-
tion within linear response theory, it is clear that in the
nonlinear regime, the inhuence of a nonlocal susceptibil-
ity and disorder is also important.
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