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Diffusionlike Motion of the Modulation Wave in Structurally Incommensurate Systems:
A NQR Study
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'sC1 NQR measurements of the spin-echo decay in pure RbzznC14 exhibit an exponential t'

diffusional time dependence, which is the first clear evidence for the existence of slow random-walk-
type motion of the incommensurate modulation wave close to the transition temperature TI. This
phenomenon can be described by an effective diffusion constant Df in a reduced real space, which is
settled as the projection of the direct space onto 4 the period length of the modulation wave. The onset
of the incommensurate phase is accompanied by nonzero Df values, which rapidly decrease on going
away from TI.

PACS numbers: 76.60.—k, 64.70.Rh

Incommensurate (I) systems are characterized by the
modulation of some local atomic property, which varies
in space with a periodicity irrationally related to the pe-
riodicity of the host lattice. In structurally I systems the
modulation wave (IMW) is formed by the displacements
of the ions from their equilibrium positions in the para-
electric unit cell. This frozen-in IMW is not completely
static but undergoes thermal fiuctuations in phase (phason
mode) and amplitude (amplitudon mode).

The existence of a gapless phason (Goldstone) mode
is predicted by the continuum model of I phases [I].
This mode represents a slow sliding of the modulation
wave with frequencies down to zero. There are, however,
no clear experimental evidences for the existence of this
mode, as in real structures discrete lattice effects [2,3]
and impurities [4] pin the IMW and introduce a finite

gap A~ in the phason excitation spectrum. Depinning
effects could be induced by thermal fluctuations of the
ionic positions or external forces like an electric field in
charge density wave systems [5].

Quadrupolar perturbed NMR [6], NQR (nuclear qua-
drupole resonance) [7], and EPR [8] techniques have been
used in the past to study the excitation spectrum of I sys-
tems. The phason gap A~ has been experimentally deter-
mined in Rb2ZnC14 from spin-lattice relaxation data [6,9]
and the estimated value was in the range 10&0 10&2 s
[6,9]. More recent experiments reported a significant in-
huence of thermally induced amplitude and phase fluctua-
tions of the IMW on the spin-lattice relaxation time T] and
the line shape [10—12] in the vicinity of the paraelectric-
incommensurate transition temperature TI. The spectral
windows of the above techniques lie in the kHz —GHz
range and they are insensitive to very slow motions with
frequencies close to zero.

Here we present the first clear evidence for the exis-
tence of random-walk-type slow motions of the IMW in a
pure crystal of Rb2ZnC14 by measuring the effective diffu-

sion constant of Cl nuclei close to TI. We demonstrate
that ~5CI(1) NQR measurements of the spin-echo decay
obey an exponential t time dependence, which can only
be attributed to the diffusional random-walk-type slow
motions of the IMW in an inhomogeneous electric field
gradient (EFG).

In high-field NMR, slow diffusional motions can be
detected by measuring the spin-echo decay in a steady [13]
or pulsed [14] magnetic field gradient. In zero-field NQR
no magnetic field gradients are present. Diffusive effects
can, however, be observed in a spatially inhomogeneous
EFG, which exists in systems with lattice disorder such
as structurally I systems and glasses. What is essential
for the observation of random translational motions is
the existence of a resonance frequency-space relation. In
one-dimensionally modulated RbqZnC14, the NQR Cl(1)
frequency-space relation takes the form [9,15]

top(r) = cop + ro2cos (q.r). (I)
Here cup is the paraelectric value of the resonance fre-
quency, q is the I wave vector, to2 ~ (Tt —T)2P, and odd
powers of cos(q r) are forbidden by the mirror plane sym-
metry of the high-temperature phase of Rb2ZnC14. This
relation is unique, i.e., it represents a one-to-one map be-
tween frequency and space only inside one-quarter of the
I wavelength. The spatial periodicity of cop(r) allows one
to project the direct space onto 4 of a wavelength of the
IMW in the direction of the wave propagation. In this
way we obtain a reduced real space, which is "folded" in
one dimension, and the uniqueness of the relation is recov-
ered. Under the inhuence of random thermal fluctuations
the nuclei make a diffusionlike motion in the folded space.
Such a motion can be described by an effective diffusion
constant D, which can be measured in an NQR spin-echo
decay experiment.

In order to find the spin-echo attenuation in an inho-
mogeneous EFG, we use the semiclassical description of
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NQR [16] with the following Bloch-like equation for the
M+ = M + iM~ magnetization in the rotating frame:

BM+ M+ 2i—orq cos (q r)M+ — + D'74M+ . (2)
Bt T2

T~ is the spin-spin relaxation time and D the diffusion
constant. Neglecting small precessional phase shifts aris-
ing from diffusion we find the echo amplitude at time
t=2~:

2'
M (2t) = g Mp exp( —2e/Tt} exp( —D(wtq}

q~'=O

2~'
2X eie'(2qx')) .

3

(3)

Here x' is the direction of the IMW propagation,
is the separation time between pulses in a two-pulse
experiment, and the summation extends over all nuclei on
the IMW.

The diffusion damping term in Eq. (3) depends on
the position x' of the nucleus on the IMW. Thus it
is possible to resolve spectroscopically the diffusion
effects at different parts of the IMW by determining
the spin-echo decay curves from the Fourier transformed
spectra.

Using a new variable X = cos (qx'), one obtains the
diffusion- and T~-weighted spectrum at positive frequen-
cies as

/+(6D) M e 2q/T2—1 1 .2"
dX

QX(1 —X)
exp —D(wtq) 4X(1 —X))

t/ t'3
exp(i(w —wtX )t'}exp —'—+ D(retq) —4X(1 —X)) dt', (4)

T2 3

with t' = t —2~. The summation over qx' has been re-
placed by an integration over X, weighted with the distri-
bution G(X) = [X(1 —X)] '/~ [9]. For Tq ~ DD and D ~
0 one obtains from Eq. (4) the static 1 NQR line shape

1(w) = (1 — ), (6}

which exhibits two edge singularities at a = 0 and cu =
co&. The quantity cu& can thus be determined experimen-
tally from the splitting of the two edge singularities.

Equation (4) represents a convolution of the static spec-
trum [Eq. (5)] with the homogeneous line shape, which is
a nonanalytical Fourier transform of the expression

t/3
/(i') = exp( —t'/T, ) exp( D(retq) —4X—(1 —X}). (6)

3

Because of the convolution, different parts of the static
spectrum are mixed. In that case the homogeneous
linewidth is comparable to the width of the static spec-
trum, the whole spectrum will be attenuated almost uni-
formly by the diffusion effects. Such a situation is found
in the close vicinity of TI, as the static spectrum width
is proportional to 6D& (x (T/ —T) p. Far away from T/

the homogeneous linewidth is negligible compared to the
static spectrum width and we get the diffusion attenuated
spectrum as

/(D2) = exp( ——
I
exp —D(wtq)'( ) 4 ( 1(1 —

)

spectrum

2~ 227'
M(2r) = Mo exp ——+ Df(6Dqq) . (8)

T2 3

The diffusion motion has been experimentally observed
in nominally pure RbzZnC14 on the 3~CI(l) line. The
NQR line shapes in the vicinity of T/ = 29 C are shown
in Fig. 1(a). At T/, the line starts to broaden, but it
remains single peaked for about 1 C below TI. There the
typical I line shape with two edge singularities starts to
appear and transforms into a staticlike line shape about
4 C below TI. The region between 29 C and 28 C,
where the line shape broadens but its shape remains
that of the paraphase, corresponds to the case where the
homogeneous line shape has larger width than the static
I line shape. The splitting between the edge singularities

Here the attenuation is zero at both edge singularities and along the inhomogeneous NQR spectrum. The
maximum in the middle of the spectrum at 6(2 = coq/2. amplitude attenuation factor now becomes

In our treatment so far we have used the approximation
that the effective diffusion of the IMW can be described
by a single scalar and constant diffusion coefficient D.
We thus do not discriminate between the amplitudon- and
the phason-induced diffusive motions. It is known [9,15]
that the cu = 0 edge singularity of the NQR spectrum
is affected mainly by the phasons, whereas the cu =
cu& singularity is affected mainly by the amplitudons.
In the middle of the spectrum both effects are mixed.
The two types of motion yield different values of the
diffusion coefficient D. To remove this deficiency of
our description we define a frequency-dependent diffusion
constant Df, which varies over the spectrum and includes
the dependence on the X variable —i.e., the different
infIuence of the phason and amplitudon types of motion
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FIG. I. (a) '5C1(1) NQR line shapes in Rb2ZnC14 in the
vicinity of TI = 29 C. The frequency scales of all spectra are
equal, whereas the scale origins are not the same. (b) The
splitting of the edge singularities co2/2' of the above spectra
as a function of temperature.

as a function of temperature are shown in Fig. 2. It is
observed that far above TI the decay is well described
by the T2 term only. This demonstrates that molecular
motions of the diffusive type are not dominant there. T2
has been determined there to be 780 p, s. In the close
vicinity of TI a strong exponential t damping is observed,
indicating that the diffusive molecular motion is now
dominant. Deep inside the I phase the spin-echo decay
is once more described by the T2 term only, yielding
the same value of T2 as above TI. The homogeneous
linewidth Avt/2 = (~T2) ' = 400 Hz is never negligible
to co2/2' in the investigated temperature range and
Eq. (7) cannot be applied. The diffusional effects are thus

properly described by Eq. (4). The same analysis has also
been performed on the low frequency singularity and in
the middle of the spectrum.

The frequency-dependent diffusion constant Df as a
function of temperature is displayed in Fig. 3. In our
determination we used ru2 values from Fig. 1(b) and the
wave vector value close to TI q = 2.2 X 107 cm ' [9].
We further assumed the T2 = 780 p, s in the region close
to T~. The results at both edge singularities as well as
in the middle of the spectrum are displayed separately.
Df is the largest very close to TI. At T = 28.5 C, Df
is constant over the whole spectrum and equal to 5.7 X
10 '0 cm /s. On lowering the temperature the diffusion

of the line shapes ru2/2~ of Fig. 1(a) vs temperature is
displayed in Fig. 1(b).

Spin-echo decay measurements have been performed
in the vicinity of TI using a pulsed NQR technique.
In addition to the decaying behavior of the echo height
as a function of the interpulse spacing time ~, slow
beats in the echo envelope were found with a frequency
of about 2 kHz. These oscillations probably originate
from indirect spin-spin interactions [17]. This effect is,
however, irrelevant to our problem; it can be accounted
for by the fit procedure by using the ansatz

&2r
M(2r) = M0eXp —

l

—+ Df(co2q)
(T2 3 j

&& [I —Csin (vr5;r)]. (9)
Here C is a constant of the order of 2 [18] and b, ; is the
frequency of the slow beats.

The fit of the echo-decay envelope has been performed
on the experimental data obtained from the spectra. At
temperatures where the spectra were single peaked, the
echo decay envelopes have been determined at the top
of the spectra. Below 28 C two edge singularities have
been observed and the envelopes were determined at both
singularities and in the middle of the spectrum. The spin-
echo decay curves of the paraelectric phase and those
obtained on the high frequency singularity of the spectrum
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FIG. 2. Temperature dependence of the "Cl(1) spin-echo
decay curves in Rb2ZnC14 below and above TI. Below TI the
curves have been obtained on the high frequency singularity
of the NQR spectrum. In the left column experimental points
(circles) are shown together with the theoretical curves (solid
lines) which have been computed from Eq. (9). The right
column shows the theoretical fit curves with the oscillatory part
substracted. These curves show the T2 and diffusive decay
only. The exponential decay of the form exp[ —2r/T, ] far
above and below TI changes into a diffusive one of the form
exp[ —Df(cu2q) 2r /3] in the vicinity of TI.
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FIG. 3. Temperature dependence of the frequency-dependent
diffusion constant Df close to TI in Rb~ZnC14. The experimen-
tal points show the values of Df obtained at the high (open
circles) and low frequency (solid circles) singularities as well
as in the middle (triangles) of the 3sC1(1) NQR spectra. Theo-
retical curves according to Eq. (10) have been obtained with
A = 3.49 (dotted curve) and A = 1.80 (solid curve).

constant drops continuously from the range 10 ' into
10 '4 cm2/s and starts to vary over the spectrum below
25.5'C. What is remarkable are the extremely low Df
values, which are about 6 orders of magnitude smaller
than those measured with NMR in a linear magnetic field
gradient. This is a consequence of a much larger variation
of the frequency with space in the NQR case.

The temperature dependence of the diffusion constant
displayed in Fig. 3 can be explained as follows. In the
plane-wave approximation and the strong-pinning limit
[19], the random-walk-type motion of the IMW can
be considered as activated over a barrier U(A) = 2WA"

[4,20]. Here we made the conjecture that U(A) depends
on the vth power of the amplitude A ~ (T&

—T)i of the
IMW, and W is a coupling constant characterizing the
impurity pinning strength. Such motion is described by a
diffusion constant D = 6/ro, where Z is the elementary
step of the random walk and ~0 is the transition time
per step, which is taken as thermally activated 7-D =

reoxp[U(A)/kT). The elementary step 8 is connected to
the impurity density n(W) as Z(W) ~ n(W) 'i3[4], where
it is considered that n depends on the impurity pinning
strength W. For simplicity we assume that n(W) can
be written in the form n(W) = bW r, and calculate the
average diffusion constant as

S(W)'
n(W) dW (T, —T)

0 70
where A = vp(1 —7/3). The effective diffusion con-
stant Df follows a similar law. According to Eq. (10)
Df behaves critically around TI and rapidly decreases on
lowering the temperature, as was observed also experi-
mentally. Deep inside the I phase diffusional effects be-
come insignificant.
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Theoretical curves in Fig. 3 are calculated according
to Eq. (10). On the high frequency edge singularity we
obtained the exponent A = 3.49, whereas in the middle of
the spectrum and the low frequency singularity A = 1.80.
The different A values indicate that in a more elaborate
model one should discriminate between the phason- and
amplitudon-induced diffusive motions.

In conclusion, NQR measurements can be used to de-
termine diffusive motions in spatially disordered systems,
where the resonance frequency-space relation can be de-
rived. In the case of I Rb2ZnC14, this technique has
demonstrated, for the first time, clearly the existence of
a slow diffusive motion of the modulation wave in the
vicinity of Tz. This was possible because extremely small
diffusion constants can be measured with NQR, which are
many orders of magnitude smaller than those measured
with NMR.
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