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Quantum Phase Transitions in XY Spin Models
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The ground state of an XY model changes at a critical transverse field, above which there is a gap
from the fully polarized ground state to the first excitation. We investigate the phase transition from
this "Mott insulator" phase as the transverse field approaches its critical value. We calculate exactly
some Green's functions and critical exponents for d-dimensional ferromagnetic lattices and for the
Sherrington-Kirkpatrick spin-glass model. Finite-dimensional spin glasses are also discussed.
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The past few years have seen a major increase in activity
in the field of strongly interacting systems. Parallel to
the intensive study of fermionic problems, there is an
increasing appreciation of the relevance of bosonic issues.
In particular, problems in the presence of disorder have
attracted much attention recently. Since the spin-1/2 XY
model is equivalent to the lattice gas of hard-core bosons,
this model has been used to describe experimental systems
whose essence is adequately captured by bosonic physics:
4He in disordered media [1]or high-T, superconductors [2]
in which the Cooper pairs may act like bosons. Very recent
developments make it plausible that in high-T, materials
the symmetry of the order parameter is of d type [3].
When granular d-wave superconductors are mapped on the
equivalent spin problem they give rise to random exchange
couplings, i.e., a spin-glass problem [4]. The quantum
spin-glass model has been studied mainly for infinite-
range interactions, i.e., for the Sherrington-Kirkpatrick
(SK) model [5—7], though there are some Monte Carlo
results in two [8] and three dimensions [9] for Ising spin
glasses in a transverse field.

In this paper we investigate the quantum XY model for
a general spin S, with and without disorder, paying special
attention to the spin-glass problem. We present some
exact results for the Mott insulator (MI) to superlluid
(long-range ordered) phase transition, which have been
investigated extensively with field theoretical [10], exact
diagonalization [11],and Monte Carlo methods [12]. Our
model is defined by the Hamiltonian

constant KSN in the Hamiltonian (1) ensures that the state
INS) has zero energy.

We rescale the Hamiltonian (1) as H = H/S and
introduce the operators

n; =5 —S,', 5;
$2S'

5+

Q2S
' (2)

H = Jl'J o. aJ + P nl, (3)

Since the operator 3V = g; n, commutes with H in

Eq. (3), we can characterize the eigenstates of H by a
given 3V: for p, ) p, , = J,„ the ground state is INS),
for which 3V = 0.

In the 3V = 1 subspace the eigenstates of H can
be found by diagonalizing J: Jv = Jiv", where v" =
(v~, . . . , v,", . . . , v~) is a normalized eigenvector. With the
help of the new operators

b„= gv,'a, , bq+ = g(v, )*a,+ (k = 1, . . . , N), (4)

for which the commutation relations are

where 5- = 5 ~ iSY. The operator n; gives the dif-
ference to the fully polarized state at site i (number of
holes) and the operator a,+(a;) creates (annihilates) a hole
at site i. From these definitions one obtains the commu-
tation relation [a;,a,+] = 6;,(1 —n;/S) and the rescaled
Hamiltonian is

N N

H = ——g J;I(S;S' + S; S, ) —K PS,' + KNS, (1)'
l WJ i=1 one obtains

[bf„bq ] = Bgq
——P v,"(v; )"n;r,q (5)

where S; = (S,', S, , S,') is the quantum spin operator
associated with the local spin 5 at site i = 1, . . . , N.
J;, (i ~ j, J,, = J,;) is an element of the exchange-
interactions matrix J, and K is the strength of the
transverse field. As we have shown [13], for K ~ K, ,

the ground state of the Hamiltonian (1) is the fully
polarized state INS), where all spins are aligned in the
z direction, i.e., the total magnetization M, = P; S,' is
NS. The critical value K,. depends only on the highest
eigenvalue J „ofJ and on the spin K, = SJ „. The

H Ik) = (I —J~) Ik) . (7)

This implies that for p, ) p, there is a gap p, —p,
between the 3V = 0 and 3V = 1 subspaces. In Ref. [13]
we have proved rigorously that this also holds for 3V )

0 = —QJ&b„+bk+ pPn, . (6)
k I

From Eqs. (5) and (6) can be shown that the state Ik) =-

b„ INS), k = 1, . . . , N, is an eigenstate of the Hamiltonian
(6),
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1: denoting by F~ the energy of a state in the subspace
3V, we have

(8)

This means that for p, ) p, , we know the ground state
and the first excitations exactly, which enables us to
calculate the imaginary-time Green's function

g(r;, rj; r, r') = (T,a;(r)a+(r')), (9)
where A(~) = exp(~H)A exp( —rH) and T, orders the
operators in decreasing time arguments. The angular
brackets refer to the ground state expectation value.
Since there is no "hole" excitation in the ground state
~NS), g(r;, rj; 7, ~') = 0 for r & 7' On the. other hand,

g depends only on the difference ~ —~', so we can set
~' =— 0. Inverting Eq. (4) and using Eq. (7) gives

space correlations. Since the gap disappears linearly with
6 [Eq. (8)], the correlation length in the imaginary-time
direction is $, ~ 6, which gives a dynamical exponent
z = 2 through the relation g, ~ $'.

The correlations in the imaginary-time direction can be
studied directly from Eq. (12). For any finite r and r
we have

showing that the relation z v = 1 is satisfied in any
dimension d and the power-law decay at the transition
point (6 = 0) fulfills the scaling relation (d + z —2 +
g)/z = d/2 [10]. In d = 1 the space correlations can be
calculated explicitly, giving

&( &)*e—~(u —J~)

g(r;, rj., ~) =
0

if7 ~0,
otherwise.

(10) g(r) = 1
g(r; r) dr = exp( —r/g), (16)

p p,

(1) Ferromagnetic lattices Equ. a—tion (10) is valid for
any J, though we know the eigenvectors explicitly only
for periodic systems. For a d-dimensional ferromagnetic
cubic lattice of size N = L" the eigenvectors of J can
be enumerated by introducing the wave vector k: v,

"
L "l~ exp(ik . r~),j = 1, . . . , L", k = n 2~/L with n =
1, . . . , d, and n = L/2, . . . , L/2 —for unit lattice spacing.
The eigenvalues of J are Jq = 2JQ cosk, where J is
the strength of the nearest-neighbor interactions. Since the
lattice is periodic, g(r, , r, ; ~) depends only on the distance
r =r; —rJ'

g(r;7') = e '"L "/exp ik ~ r + 2Jr gcosk . (11)

In the limit L ~ ~ the sum L "g„ in Eq. (11) can be
replaced by an integral, giving

g(r;v) = e (12)

where I„(x) is the modified Bessel function of integer
order. The Fourier transform G(k, ai) of g(r; r) is given
by

G '(k; cu) = ice + p, —2J g cosk

G '(k; cu) -. i~+ Jk +6, with 6= p, —p,
(14)

For cu = 0 there is a diverging correlation length g ~
6 ' in the space direction. From Eq. (14) it is seen
that v = 1/2. Right at the transition point G(k; cu) ~
k ~, which gives g = 0 for the power-law decay of the
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Equations (12) and (13) give the exact Green's function
for the ferromagnetic cubic lattice in the MI phase, i.e., for
p, ) p, , = J „=2Jd. Approaching the transition from
above G(k; cu) [Eq. (13)] can be approximated for k « 1

as

'=ln p+ 4p' —p!
pc

(17)

dA g(A)
-' -",

where g(A) = N ' Pq 6(A —J&) is the density of states
of J, and 6(x) is the Dirac delta function. Equation (18)
shows that the imaginary-time correlations can be ob-
tained using the spectrum of J in the MI phase, i.e. , for
p ~ pc.

The most celebrated example of a disordered system
whose spectrum is known in the limit W ~ is that in
which, for all pairs (i,j ), J;, are random numbers governed
by independent symmetric Gaussian distributions with
mean zero and variance I/~N. This SK model possesses
a semicircular spectrum [14] g(A) = (27r) 'Q4 —A and
the transition occurs [7,13] at p, = 2. Putting this expres-
sion into Eq. (18) gives

TP,

gsK(r) = Ii(2r) for p, ~ p, , (19)

where I~(x) is the modified Bessel function of first order.
Equation (19) is the exact imaginary-time correlation func-
tion of the XY SK spin-glass model in the MI phase. Its
critical behavior in the limit ~ ~ is

gsK(~) = (20)

In the limit 6 ~ 0, g(r) ~ rg(r/g), with the scaling
function g(x) = exp( —x)/x and $ ~ 6 't, in accordance
with the general d-dimensional result v = 1/2, il = 0,
and z = 2 obtained from Eq. (14).

('2) Disordered systems In the d.—isordered case it is
difficult to study the space correlations because this re-
quires knowledge of the eigenvectors of J. Nevertheless,
to see the imaginary-time behavior of g(r;, r, ; r) we can
calculate from Eq. (10) the average on-site correlation
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Xo = C„(r)dr = g(r) dr. (21)

The correlation length in the imaginary-time direction is
' and at the phase transition (6 = 0) the corre-

lation function decays as gsK(r) ~ r . We recall that
Miller and Huse [6] obtained g(r) ~ r for the Ising SK
spin-glass model.

For the SK model the transition to the spin-glass state
occurs when the local susceptibility go becomes 1. yo can
be calculated from the spin correlation function C„(r) =
(T,S,(r)S,(0)) by integrating over r:

0.12

0.08 —;

IPR- ';

0.04—

-0.6

-1.8

-2.4
-0.2

In the last equality we have used the rescaling relations of
Eq. (2) and the fact that C, (r) is an even function of r.
Integration of Eq. (19) gives

1
~D(r ) =

2
~ —gv' —

4&~l (22)
0.00 I

-0.8
I I I

-0.6 k -0.4
I

-0.2

As one can see, Xo(p, ,) = 1, which confirms our previous
conjecture [7] based on finite Trotter-Suzuki calculations
and on some physical arguments which say that the spin-
glass transition occurs at p,

It is remarkable that the static approximation [5] gives
the same Xo as Eq. (22) for T = 0 [15]. Although
we have no explanation for this coincidence, we recall
that the static approximation introduces two errors [7]:
(S,(r)S, (0)) is supposed to be constant and (S (r)S~(0)) is
completely neglected. These two errors seem to cancel
each other out in the expression of go.

Putting the Xo of Eq. (22) into the expression for the
bulk nonlinear susceptibility X2 [16],we have

(23)
1 1 1

OC

Xo Xo QP 4

Near the transition, p. p,„g2 diverges as 6 ~ with

y = 1/2. Comparing this result to that obtained for the
Ising model [6] we find the same exponent y = 1/2, but
without the logarithmic correction present in the Ising case.

(3) Finite dimensional -spin glasses. —In both the ferro-
magnetic and the SK spin-glass cases the transition occurs
from the MI state to a superfluid phase, i.e., to a long-range
ordered phase (for d = 1 there is a quasi-long-range order).
In these models the eigenvector of the highest eigenvalue
is an extended state, which means that each element of
this vector is of the order of I/~N. Thus the last "disturb-
ing" term in the commutation relation of Eq. (5) can be
estimated as 8 (3V/N), implying that for a small number
of excitations 3V the b operators behave as independent
bosons.

For finite-dimensional disordered matrices J the eigen-
vectors of the highest eigenvalues are localized [17]. One
can characterize this localization by the so-called inverse
participation ratio (IPR) Pq = P, lv,"l . An example of
the IPR of the eigenvectors is shown in Fig. 1. For two
nonoverlapping localized eigenvectors v and vq the cor-
responding operators bk and bq [Eq. (4)] commute: the
last term in Eq. (5) can be neglected. On the other hand,

FIG. l. Inverse participation ratio (IPR) of a 30 X 30 square
lattice averaged over 10' samples. The nearest-neighbor
independent random exchange interactions 1;, are uniformly
distributed on [—I, I]. Eigenstates of the interaction matrix
J are labeled by k E [—I, I], k = —I corresponding to the
ground state of J. The inset shows the averaged spectrum
of J. Since the IPR is symmetric and the spectrum of J is
antisymmetric with respect to k = 0 (see Ref. [18]) only their
left-half parts are plotted.

for the commutation of bq and bj,+, this disturbing term
will be of the order of 1.

To quantify these ideas, let us estimate the energy of a
state containing two excitations lkq) = bk b~ lNS):

1
Hlkq) = [ (Ju + I&—) + 2p]lkq) + —g ckqp Jp I pj),sp qp p

(24)

with ck~p„= g;(v,")*(v;)"v,"v,". If v" and v'i are two dif-
ferent localized states, the biggest contribution in the last
term of Eq. (24) comes from Qtq = ck~j,q

= P; lv, I lv; I,
which is nothing but the overlap of the states v and vq. If
v~ and vq are from the low-lying strongly localized states,
one can suppose the corresponding Qk~ to be small.

On the other hand, if k = q, the biggest contribution
in the last term of Eq. (24) comes from ck«k = Pk,
which is nothing but the IPR of the kth state. Since
the IPR of the low-lying localized states is finite, this
term gives a finite on-site repulsion. This means that as
far as the overlap of the lowest-lying states is small, the
corresponding excitations behave like bosons with strong
on-site repulsion on a weakly coupled lattice, where
the site energies are given by the one-particle energies
Jk —p, . The repulsive interaction between the "bosons"
insures that slightly below p, , only the lowest-lying states
be occupied by a small number of bosons.

Though the nature of the coupling between the one-
particle states is certainly more complicated than the
simple "hopping" of bosons, these details can be irrelevant
if the coupling is small enough, i.e., for small bosons
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densities. In this case one expects a behavior similar to
that of a Bose glass [10]:the imaginary-time correlations
decay as ~, giving a diverging susceptibility. When p,
is lowered further, and the occupied states more and more
overlap a transition from this localized phase the spin-glass
phase happens. The study of this transition is beyond the
scope of this Letter.

In conclusion, we have studied the phase transitions
from the Mott insulating phase for the XY model in a
transverse field. The critical exponents v = 1/2, z = 2,
and g = 0 have been obtained for ferromagnetic lattices.
We have calculated the exact imaginary-time Green's
function of the SK spin-glass model which gives a ~

decay at the critical point and the nonlinear susceptibility
diverges as (p —p, ,) 'l . In the SK spin glass the transi-
tion from the MI phase passes directly to the spin-glass
state, unlike finite-dimensional spin glasses where there is
a localized phase between the MI and the spin-glass phases.
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