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We have calculated the pressure-temperature phase diagram of the y=« isostructural transition in

Ce on the basis of the Mott transition model.

The theory correctly describes the linear variation
of the transition temperature with pressure and the existence of a critical point.

The quantitative

agreement with the experimental diagram is good. The influence of different free energy contributions
(configurational, magnetic, and vibrational) on the phase transition in Ce is discussed.

PACS numbers: 71.45.Nt, 64.70.Kb, 71.28.+d

Cerium is one of the most fascinating elements in the
periodic table. It has, in particular, an extremely rich
phase diagram with at least five allotropic forms [1]. Most
attention has been focused on the y=a isostructural phase
transition where the high-volume face-centered cubic (fcc)
v phase collapses into the low-volume fcc a phase at a
pressure of about 7 kbar. There is little doubt about the
electronic nature of this transition, and a great number
of theoretical investigations have dealt with the electronic
properties of cerium [2—15].

The unusual behavior of Ce has been described within a
number of models that may be classified into three groups.
The first is the promotional model of Zachariasen and
Pauling [2] which explains the transition as a promotion
of the Ce 4f electron into the 5d-6s valence band by the
movement of a sharp f level from below to above the
Fermi level [3]. However, neither experimental studies
[1] nor calculations [4—7] were able to confirm this idea.

The second model is the so-called Kondo volume-
collapse (KVC) model [8—12], where one assumes that the
transition is caused by a change in the conduction electron
screening of the Ce 4f electron, which is considered to be
localized in both the y and the « phase. In this model
the Anderson impurity Hamiltonian is used to describe
spectroscopic [10,11] as well as thermodynamic [8,12]
properties. In particular, Allen and Martin [8] and later
Allen and Liu [12] calculated a pressure-temperature (P-
T) phase diagram for the y=« transition and obtained
good agreement between the theoretical and experimental
values for the critical point. This fact has been viewed
as strong support for the KVC model. However, on the
basis of the analysis of experimental data, Koskenmaki
and Gschneidner [1] emphasized the fact that the transition
temperature depends linearly on pressure, and this is in
contrast to the significant curvature found in the theoretical
diagram of Ref. [12].

The third model is the Mott transition model advocated
by Johansson [4]. According to this, the nature of the
4f states in Ce changes from local nonbonding in the y
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phase to itinerant bonding in the « phase. A number of
recent ab initio calculations, where one assumes that the
4f electron is localized in y-Ce but delocalized in «- and
a’-Ce, have given excellent results for the ground state
properties of y- and «-Ce [7,13—15] as well as for the
a=a' transition [16]. Moreover, by applying the self-
interaction corrected (SIC) local density approximation
(LDA) Szotek, Temmerman, and Winter [14] and Svane
[15] find that in spite of the dramatic change in the
electronic structure at the transition, the difference in total
energy between y- and a-Ce is of the order of mRy. A
similar energy difference is found in Ref. [13], and this is
exactly what is required to describe the transition in the
Mott transition model.

Until now the only quantitative description of Ce at finite
temperatures within the Mott transition picture is provided
by the semiempirical band model of Rainford and Edwards
[17]. In the present Letter we therefore calculate the P-
T diagram for the y=a transition in Ce based on the
Mott picture and the thermodynamic model illustrated in
Fig. 1. According to this, there are at zero temperature two
phases in Ce, a low-volume « phase which is stable, and a
high-volume y phase which is metastable. The resulting
binding energy curve viewed as a function of volume is
formed by two branches corresponding to «- and y-Ce,
respectively, which cross at some intermediate volume.
The transition between «- and y-Ce represented by the
common tangent in Fig. 1(a) occurs when the lattice is
expanded, and from the experimental data of Ref. [1] the
transition pressure is deduced to be —6 kbar.

As the temperature increases the state (« or y) which is
metastable may be thermally populated. Hence, there is
a probability x of finding a y-Ce atom in the system and
a 1 — x probability of finding an a-Ce atom. Therefore,
we may consider our system as a pseudoalloy CelCe{_,
and write its free energy Fa.joy for any “concentration” x,
volume V, and temperature T as

Faoy(x,V,T) = E(x,V) — TS(x) + F,(x,V,T). (1)
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FIG. 1. Binding energy curves for a- and y-Ce (a) and the
free energy of the system Fy at different temperatures (b)
as a function of atomic volume V,,. The energies in (a) are
relative to the minimum energy for «-Ce, while in (b) they are
relative to the minimum value of Fg at the corresponding
temperature. The dot-dashed line in (a) corresponds to the
experimental value of —6 kbar for the transition pressure at
zero temperature. The energy shift AE” in Eq. (5) has been
adjusted to reproduce this transition pressure.

Here, E is an average internal energy per atom in the
pseudoalloy at 7 = 0, S the entropy, and F), the free
energy of the lattice vibrations.

In the model, we include the configurational mixing
entropy, which in the mean-field (MF) approximation may
be written as

Scont(x) = —kg[xInx + (1 — x)In(1 — x)], ?)

where kg is the Boltzmann constant, and the magnetic
entropy from the localized magnetic moment on the y-Ce
atoms. Assuming that for temperatures of interest only
the ground state multiplet with total angular momentum
J = 5/2 is appreciably populated, the latter may be
calculated from

Smagn(x) = kpxIn(2J + 1). 3)

Finally, the vibrational free energy F),(x,V.,T) is es-
timated in the Debye-Griineisen model [18] from the
ground state binding energy curve for any particular x.
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Since we are dealing with a pseudoalloy, the alloy
concentration is not a free parameter, and only those
concentrations x.q will occur which for a fixed volume
and temperature minimize the free energy (1) in the
concentration interval 0 = x = 1. Hence, we arrive at the
final expression for the free energy of the system

Fsyst(v’ T) = Falloy(xeq(va T),V,T). @

It follows that if we calculate the system free energy as
a function of volume we may obtain Gibbs free energy
G = F + pV, where p is the pressure, and determine
the transition pressure of the y=a transition at any
temperature. Hence, we may calculate the P-T phase
diagram for Ce within the Mott transition model.

To realize such a program we need a good description
of the initial a and 7y states as well as of the alloy to-
tal energy E(x,V). In particular, it is important for the
accuracy of the calculated phase diagram that the equilib-
rium volumes of pure y- and «-Ce are well reproduced
by the total energy calculations. For this purpose we use
the scalar-relativistic linear muffin-tin orbitals (LMTO)
method within the atomic sphere approximation (ASA)
and in the tight-binding representation [19-21] in con-
junction with a Green’s function technique and treat the
alloy within a scheme based on the single-site coherent-
potential approximation (SS-CPA) [22,23]. In all the cal-
culations the 5s and 5p states are treated as semicores,
while the remaining core states are frozen.

To describe paramagnetic «-Ce we regard the 4f elec-
tron as a delocalized valence electron. Note that such an
assumption together with LDA leads to an underestimate
of the equilibrium volume and an overestimate of the bulk
modulus compared with the experimental values (Table I).
However, this is basically an effect of using the LDA rather
than an effect associated with any special properties of a-
Ce, because for the two closely related elements, La and
Th, we find similar deviations between the LDA results
and the experimental data, as may also be seen in Table 1.
Moreover, Soderlind et al. [26] found that the ground state
parameters of a-Ce are very sensitive to the approxima-
tion used for the exchange-correlation functional. When
we apply the Becke-Perdew gradient correction (GGA,
Ref. [27]) to the exchange-correlation potential we obtain
a much better agreement between the calculated and exper-
imental atomic volume and bulk modulus for a-Ce as well
as for La and Th (Table I). For this reason, we chose to
describe pure «-Ce and the «-Ce atoms in the alloy within
this approximation for exchange and correlation.

One may account for the localized 4f electron in y-Ce
by means of the SIC-LDA scheme [14,15]. However, in
an alloy this becomes numerically very complicated, and
we therefore chose the approach used earlier in Ref. [7];
i.e., we consider one 4f electron in y-Ce as fully localized
by treating it as part of the inert core, but leave f functions
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TABLE I. Calculated and experimental ground state atomic volume V (in A3) and bulk modulus B (in kbar) for the pure a-Ce,
y-Ce, fcc La, and fcc Th.
Method ) a-Ce v-Ce La Th
\4 B \4 B \% B \4 B
LDA? 24.45 477 33.70 312 33.18 320 30.05 618
GGA® 27.74 391 37.31 288 37.07 268 32.63 572
SIC-LDA® 25.90 443 34.00 340
SIC-LDA® 24.80 484 32.44 310
Expt. 28.17¢ 270° 34.36¢ 239f 37.314 243f 32.87¢ 543f
2This work.

bReference [14].
¢Reference [15].
dReference [24].
¢Taken from Ref. [13].

fReference [25], value for La is given for hexagonal structure.

in the LMTO valence basis set. Using the Vosko-Wilk-
Nusair parametrization [28] of the exchange-correlation
energy density and potential our paramagnetic calcula-
tions for the equilibrium atomic volume and bulk modulus
of y-Ce (Table I) show excellent agreement with the re-
sults obtained from the SIC-LDA calculations [14,15] as
well as with experimental values. We therefore use this
set of approximations for pure y-Ce and for y-Ce atoms
in the alloy.

Within the frozen core approximation [20], used in our
simplified description of +y-Ce, the contribution to the
energy from the localized 4f electron is discarded. We
must therefore align the energies of the two phases of Ce
by an energy shift AE” added, for instance, to the total
energy of y-Ce [29]. We emphasize that this is the only
adjustable parameter in our model and that it is introduced
for technical reasons rather than as a matter of principles.
The internal energy E(x, V) in (1) may now be written in
the form

Ex,V) =01 — x)E“(x,V) + x[E"(x,V) + AEY], (5
where E/(x,V),j = a, vy is the first-principle total energy
calculated per a (or y) atom as allowed by the ASA
within the SS-CPA [22].

The calculated phase diagram for the y=« transition
in Ce is shown in Fig. 2 together with the experimental
phase diagram taken from Ref. [1]. It is seen that
the present theory, labeled MF in the figure, correctly
describes the salient features of the phase diagram, i.e.,
the linear dependence of the transition temperature on
pressure and the existence of a critical point. The zero
pressure transition temperature is calculated to be 135 K,
in excellent agreement with the experimental value 141 =+
10 K. The critical point is found at 980 K and 38.6 kbar,
in fair agreement with experiment (600 = 50 K, 19.6 =
2 kbar, Ref. [1]). A small overestimate of the critical
temperature and pressure is to be expected because of
the application of the mean-field approximation for the

entropy. If we use the more elaborate cluster variation
method (CVM) in conjunction with the CPA Connolly-
Williams scheme for calculating interatomic interactions
[23], we obtain an even better result for the calculated P-
T diagram (see Fig. 2).

Within the framework of our model we now analyze the
influence on the calculated phase diagram of the different
contributions to the free energy (1). First, we find that
the vibrational contribution has little effect on the phase
diagram (Fig. 2). This is to be expected, because the
ground state parameters for a- and y-Ce are close to
each other (Table I), which means that the free energy
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FIG. 2. Pseudoequilibrium pressure-temperature phase dia-
gram for Ce. The experimental result is taken for [1] and
shown by the full line and filled squares. The zero tempera-
ture value is obtained by extrapolation. The diagram calculated
within the MF approximation and with all the contributions to
the free energy included is shown by the heavy full line. The
corresponding critical point is shown by the full circle. The
results obtained by the CVM are indicated by the dotted line
and the open diamond. The dashed line corresponds to a MF
phase diagram where the effect of alloying is neglected, i.e.,
Scont = 0, and the dot-dashed line with the open triangle cor-
responds to the MF diagram calculated without the vibrational
contribution to the free energy, i.e., F}, = 0.
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of the lattice vibrations in the two phases as estimated
in the Debye-Griineisen model [18] will not differ much.
Second, our calculations show that close to the ground
state volumes of pure a- and y-Ce, between which the
transition takes place, the equilibrium concentrations x.q
are very close to O or 1, respectively, up to temperatures of
about 500 K. This means that at low temperatures we may
neglect the alloying effects when calculating the transition
pressure. If we also neglect the vibrational free energy,
the only entropic contribution left is that of the magnetic
moment on the Ce atoms, which is zero in the a phase and
kg In(2J + 1)inthe y phase. Thus, this term is responsible
for the low temperature part of the phase diagram and,
in particular, for the stabilization of y-Ce at temperatures
above 135 K. Moreover, the transition pressure may now
easily be estimated as [30]

kB ln(2J + 1)

P(T)=Po+ T
() 0 V(;/'Véy

, ©
where the subscript 0 refers to 7 = 0, and this immedi-
ately explains the observed linear dependence of the transi-
tion temperature on the pressure. Finally, for the artificial,
intermediate volumes the equilibrium concentration x.q is
substantial already at relatively low temperatures (about
300 K). This results in a softening of the crossover be-
tween the two branches of the free energy, as shown in
Fig. 1(b), and in the end to the occurrence of the critical
point. The last statement is illustrated in Fig. 2. When
the effect of alloying is completely neglected, the low tem-
perature behavior of the phase diagram is almost identical
to that of the complete calculation, but the critical point
is lost.

In summary, we have calculated the P-T phase diagram
of the y=a transformation in Ce based on the Mott
transition picture. The theory correctly describes the
topology of the experimentally observed phase diagram,
i.e., the linear variation of the transition temperature with
pressure and the existence of a critical point.
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