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de Haas —van Alphen Oscillations in a Superconducting State at High Magnetic Fields
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Low-temperature quantum oscillations of the de Haas —van Alphen (dHvA) amplitude are shown to
persist far below the upper critical field of a strongly type-II superconductor, due to the gapless nature
of the BCS quasiparticle spectrum in high fields. The dHvA amplitude in the superconducting state is
smaller than its normal state counterpart by the factor —[max(T, I )/A]2, where I is the damping. This
factor reflects the presence of a small gapless portion of the Fermi surface, surrounded by regions where
the BCS gap is large. The agreement with recent experimental data on V3Si is very good.

PACS numbers: 71.25.Hc, 74.60.—w

There has been much interest lately in properties of
high T, superconductors (HTS) and other strongly type-II
systems at high magnetic fields [1]. Recent reports clearly
demonstrate the de Haas —van Alphen (dHvA) effect in the
mixed state of A15 superconductors (V3Si and Nb3Sn),
as well as in the layered superconductor 2H-NbSe2 [2—
4]. In all cases it was found that quantum oscillations
in the dHvA amplitude persist to a surprisingly low
fraction (-60%) of the upper critical field H, 2 This.
is surprising, since, in the standard Abrikosov-Gor kov
theory, one expects an exponential suppression of the
dHvA amplitude due to the large superconducting gap 6
at the Fermi surface. Furthermore, it was found that the
dHvA amplitude for the fixed value of magnetic field, H,
behaves as a function of temperature, T, in the same way
as in the normal state, except for the overall reduction
in magnitude when the sample becomes superconducting.
The presence of these dHvA oscillations in the mixed
phase could, in principle, be due to a small portion of
the sample remaining normal ~ However, heat capacity
measurements have ruled out this possibility [2,3].

In this Letter we show that these experimental results
are a direct manifestation of a qualitatively new nature
of the BCS quasiparticle spectrum at high fields. As
shown in Refs. [5,6], at fields near H, 2, this spectrum is
gapless at the set of points in the magnetic Brillouin zone
(MBZ). These nodes in the gap refiect the center ofmass--
motion of Cooper pairs in high magnetic field, in contrast
to the familiar nodes of a zero-field unconventional (i.e.,

p or d-wave) an-isotropic superconductor which are due
to the relative orbital motion. The gapless behavior
persists to a relatively low fraction of H, 2 [6], as long
as A(T, H) remains smaller than or comparable to hco„
where A(T, H) is the average BCS gap and to, = eH/mc
is the cyclotron frequency. The results of Corcoran et
al. then follow from the presence of a small portion of
the Fermi surface containing a coherent gapless band
of quasiparticles, while the rest of it is gapped by a
large 5 [7]. High magnetic fields, low temperatures, and
clean samples provide ideal conditions for the validity of
this picture, with the coherent quasiparticle propagation
extending over many unit cells of the vortex lattice. For

example, the V3Si sample used in experiment [2] satisfies
well the last condition, with its electronic mean-free path,
lo, being much longer than the separation between the
vortices (given by the magnetic length l —= Qc/2eH): lo =
1450 A at T = 1.3 K, while the intervortex separation
varies from -60 to -45 A for fields between 10 and
18.5 T. This situation should be contrasted with the one
at low fields, where coherent propagation is suppressed
and the low-lying quasiparticle excitations are localized
in the cores of isolated vortices.

At high magnetic fields, the electrons participating
in superconducting pairing occupy a well-defined set of
Landau levels (LLs). At low temperatures and high fields,
where hto, » T, r ' (I o = h/2r is the scattering rate)
and h~, ~ 6, numerous "quantum oscillation" effects
arise as a consequence of this Landau quantization [8].
In this regime the superconducting order parameter b, (r)
is well described by the Abrikosov solution [9] confined
to the lowest LL for Cooper pairs [10]. The BCS
Hamiltonian is diagonalized in the representation of
Ref. [11], where electronic states are labeled by the
quasimomentum q (q i H) restricted to the first MBZ,
momentum k, parallel to the field, and the LL index
n. Cooper pairs are formed from the electrons with the
opposite momenta (q, k, ) and spins belonging to the same
(diagonal pairing) or different LLs (off-diagonal pairing)
[5,10]. Near H, 2, where 5 «. hco, , the off-diagonal
pairing can be treated as a perturbation, and the BCS
quasiparticle spectrum is obtained analytically [5,6, 10]:

62k
e„(k,) = ' + hco, . (n + 1/2) —p. ,

2pl

where p, is the chemical potential. The spectrum con-
sists of n, branches (n, =int[p/ht. o,. ] is the number of
occupied Landau levels) in which the superconducting or-
der parameter b„„(q) goes to zero at points q;, forming a
"vortex lattice" in the q space. There is a strong linear
dispersion around these points (nodes). b, „„(q)for differ-
ent n in (1) behave similarly in the vicinity of and differ
considerably only far away from these nodes. At lower
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fields, where 6 becomes comparable to Fico„ the off-
diagonal pairing must be included on equal footing. The
excitation spectrum is found numerically in Ref. [6] and
still exhibits gapless behavior in some of the branches,
while the gap starts opening up in the rest. Eventually, at
yet lower fields, the LL structure is destroyed by large 5
[6]. The presence of these nodes and other regions with a
very small gap at the Fermi surface, as A(T, H) increases
from zero to ~ hen„ is the key aspect of our theory.

We now consider the dHvA effect in such gapless
high-field superconductor in the low-temperature limit.
The first step is to determine the oscillatory part of
the thermodynamic potential, A„,(H, T). Initially, we
consider a homogeneous 3D system (like V3Si, Nb3Sn,
and other A15 type-II superconductors) and then show
how the results change for the layered systems like NbSe2.

The quasiparticle contribution to the thermodynamic
potential per unit volume is given by

g g in[1+ exp( —PE„(k„q))]
1 1

+ —[E„(k„q)—e„(k,)],

g 4(n) = 4(0)/2+
n=O

+ 2Reg
jc= 1

dn P(n)

dn @(n) exp(i 2' kn), (3)

we can perform the sum over Landau level index n in (2)
and get the oscillatory part of fl,„, as

where P = 1/T and E„(k„q) is the quasiparticle excita-
tion energy (1). Using the standard Poisson resummation
formula,

osc

BZ

1 1
™

(—1)k ~2vrk
cos p, —— de exp(i27rke/hen, )27r i PRcoc p=i Vk ( RMc 4 )

d q ln 1 + exp —P e + (A(q)~ + — e2 + (5(q))2 —&
2-

M

where q = ql is the quasimomentum rescaled by mag-
netic length.

In deriving (4) we have assumed a spherical Fermi
surface. In real systems, with more complicated
Fermi surfaces, cos(2vrkp, /hen, —vr/4) is replaced by
cos(BA/co,*m' —vr/4), where A is the extremal cross-
sectional area of the Fermi surface in the plane J H and
co,* = eH/m*c, m* being the effective mass associated
with the orbit around A [12]. We have also neglected the
fact that 5, the overall amplitude of b„„(q), oscillates as
a function of H, and have assumed that the oscillatory
piece of 5 is much smaller then its "smooth" part. This
is a good approximation if the number of occupied
LLs, n„ is large (~n, && 1). Furthermore, we have
neglected different features in A„„(q) as a function of a
LL index n since they are pronounced only away from
the gapless points (nodes). We also have assumed that
the gap function around the nodes already includes the
renormalizations coming from off-diagonal pairing terms.

While the systems in question are rather clean [3], some
impurities and defects are still present and give rise to a
small exponential decay of dHvA amplitude even in the
normal state. Therefore, we should include disorder in
our calculations. This is accomplished by introducing the
density of states per gapless branch of the spectrum (1) in
the presence of disorder as

N(co)/N„(0) = —Im g=1 + e(k, )
—cu2+ Eq, k, 2' (5)

where cu = cu —X(cu) and N„(0) is the normal density
of states at the LL. In the clean limit (no disorder)
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N(cu)/N„(0) = (cu/b, ) for small energies, reflecting the
presence of nodes (gapless points) in the quasiparticle
spectrum. This strong energy dependence suggests that
the effective scattering rate v ' in the superconducting
state will be modified relative to the normal scattering
rate r, ' We tak.e the self-energy X(cu) to be X(&) =

i r, wher—e I = ~/2r, which results in Nd;, (cu)/N„(0) =
(I /b ) + (cu/6) . This is a good approximation in
the unitary limit (otherwise the scattering rate depends
strongly on energy —we have investigated the behavior
of density of states in the presence of various forms of
static disorder and will present these results elsewhere
[13]). In the end, I' has to be determined self-consistently
as lim o iX(co).

It is known that in conventional superconductors, with
a finite gap everywhere in the momentum space, the
quasiparticle contribution to A„,(H, T) is exponentially
small at low temperatures because of the large value of
5/T (unless the field is very close to H, 2, within a few
percent). On the other hand, in the gapless high-field
superconductor described above, there are quasiparticle
excitations with momenta q such that A(q) ~ T which give
a large contribution to the thermodynamic potential (4).
Therefore, we divide the MBZ into two different regions.
The "gapless" region (which we label g), has b, (q) =
Aq for all q ~ q„with q, = C max(T/b, , I /6) being the
radius of g and C a constant of order unity. Outside of Q',

where A(q) ) max(T, I ) for all q, we will approximate
A(q) with the average value of the gap function (b, =
(A(q))„) [14]. This is the "gapped" region. In setting the
boundaries of g we have allowed the possibility of T ( I,
which is actually the case in Ref. [2]. There, for example,
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[4] reported the first observation of dHvA oscillations in 2H-NbSe2 at magnetic fields below H, 2 .In a layered system
there is hopping, t, between the layers so that the electron dispersion along the field is given by t cos(k, d), where d is
the interlayer separation. In this case the oscillatory part of the magnetization due to the quasiparticle excitations around
gapless points is given by

M~„(H, T) =—eh 1 p, ~T I ) ~ (—I}" . l27rkp, 7th

mc l d (hco, )3t t't2 (5' b, j ~k ~k ( Fico, 4)C max —,—
~

~~ sin

&2~'kT & &T r& '~
X T/sinh exp( —2vrkI'/hco, ) + 6~ maxl —,—

hco, j ( (~ ~) )
(10)

where we have assumed that t ~ hco, . Comparing (6) and
(10) we see that magnetization in a layered system has the
same form as in the homogeneous 3D system up to the
dimensionless factor (Qmtrrd) '. The dHvA oscillations
persist deep in the mixed state because of the gapless
region g on the Fermi surface [16]. However, in layered
superconductors such as 2H-NbSe2 there is a possibility
of the charge density wave instability that can modify the
shape of the Fermi surface in the certain parts of the MBZ,
so that the results of the simple model presented above
might not be quantitatively appropriate.
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