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Path Integral Monte Carlo Simulation of Isotopic Liquid Helium Mixtures
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We report results of a path integral Monte Carlo simulation of a liquid -'He-4He mixture at low
temperature. In the limit of low 3He concentration, a kinetic energy of 17 K is found for the -'He

atoms; the 'He effective mass is I = 2.3m. The restricted path integral Monte Carlo method was
utilized to investigate the separation of the mixture into a 'He- and 4He-rich phase.

PACS numbers: 67.60.—g, 61.20.Ja

The phase diagram of liquid mixtures of He and 4He
has elicited considerable theoretical [1] and experimental
[2] interest. At a low ~He concentration, 3He atoms can
be regarded [3] as essentially free quasiparticles, with an
effective mass m*. As the concentration x is increased,
two important macroscopic effects are observed: the
gradual suppression of 4He superfluidity, with the A point
becoming a line A(x) ending at the tricritical point (x, =
0.669, T, = 0.872 K), and, below T„ the separation of the
mixture into two coexisting phases, a He- and He-rich
phase. In the T ~ 0 limit, 4He is excluded from the 3He-

rich phase, whereas the extrapolated solubility of He in
4He is finite, around 6.6%.

Microscopic studies of the mixtures, based on ab ini-
tio interatomic potentials, have so far been limited to a
single 3He atom in liquid 4He; ground state estimates
for this case have been obtained by means of variational
calculations, based on Jastrow-type wave functions [4],
possibly with the inclusion of backfiow effects [5]. Quan-
titative discrepancies exist between variational results and
experimental data; for instance, the predicted value of
the ~He effective mass m* is about 1.7m [5], against an
experimental value of m' = 2.3m [6]. Also, variational
calculations predict [4] a kinetic energy of a 3He atom
in liquid 4He around 18—19 K; however, recent deep in-
elastic neutron scattering measurements of the momentum
distribution in dilute liquid 3He-4He mixtures at low tem-
perature [7] yielded a kinetic energy of 11 ~ 3 K for the
3He atoms, considerably lower than expected. Because
the calculations mentioned above are variational, the dis-
crepancies with the experiment could be due to inadequa-
cies of the trial wave functions utilized.

In this Letter we report results of a path integral
Monte Carlo (PIMC) study of a He- He mixture; our
aim was (a) to obtain reliable low-temperature kinetic
energy estimates for a single 3He atom using a technique
(PIMC) which, unlike a variational calculation, is exact
and needs no a priori physical assumption (e.g. , a trial
wave function); (b) to explore quantitatively the phase
diagram of the mixture at finite 3He concentration.

For a single He impurity in liquid He, we obtain
a ground state kinetic energy of 17.1 K, lower than the
variational estimate but still significantly higher than the

experimental result; we calculated the effective mass I*
of the He atom and found it to be about 2.3 times the
bare 3He mass, in excellent agreement with experimental
findings.

In order to obtain theoretical insight into the phase
diagram of the mixture at finite x, we simulated a system
with an equal number of He and 4He atoms at 250
and 500 mK and observed an equilibrium situation with
two distinct phases; the exclusion of 4He atoms from
the 3He-rich phase, as the temperature is lowered, is
qualitatively reproduced; a well-defined 3He-4He interface
is observed at T = 250 mK; the calculated equilibrium
low-temperature solubilities are in reasonable quantitative
agreement with experiment.

In the remainder of this Letter we give a brief descrip-
tion of the technique utilized in our calculation, as well as
of the different systems studied, then present the results.
We considered a system of N helium particles in a box,
with periodic boundary conditions. Of these particles,
n = xN are 3He and the remaining N —n are He atoms.
We used a two-body Aziz potential to model the interac-
tion between helium atoms; this potential affords an ac-
curate description of the energetic and structural proper-
ties of liquid helium, including the momentum distribution
[8]. The computational technique which we adopted, path
integral Monte Carlo, is a powerful tool to calculate finite-
temperature properties of quantum many-particle systems.
Here we only sketch its essential elements; for a more
thorough description, see, for instance, [9]. If we con-
sider a quantum system of N particles, characterized by a
Hamiltonian H, the thermal average of a physical observ-
able 6 at a temperature T is given by

(@& =— dRG (R)p (R, R; P),

where p = I /ks T and R —= (r~, r2, . . . , rA), r; being the
coordinate of the ith particle; p(R, R; p) = (R~e PH ~R) is
the many-body density matrix and Z = f d R p (R, R; p)
is the partition function. A PIMC calculation consists
of generating stochastically a set of configurations (R;),
statistically sampled from a probability density propor-
tional to p(R, R; p); the quantity (6) can thus be eval-
uated by averaging over the set of values (0(R;)J. Of
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course, the explicit form of p(R, R; P) is not known; how-

ever, one can use the identity e PH = (e 'H)M, with r =
P/M. As r ~ 0, explicit approximations for p(R, R', r)
can be obtained, making it possible to generate the config-
uration sample [R;) by sampling "paths" through the con-
figuration space from a probability density proportional to
p(Rp, R~', r)p(R~, R2', r) . p(RM ~, RM, r)

In order to account for particle indistinguishability, the
paths must be allowed to close onto a permutation of the
initial positions of the N particles, i.e., RM = PRO, P be-
ing a permutation of the particle's indices. Permutations
become increasingly important at low temperature; thus,
a key ingredient of the PIMC method is an algorithm to
sample permutations efficiently [9].

A problem arises in the case of fermion systems; the
paths closing onto odd permutations of the initial positions
yield a negative contribution to the observable average.
At low temperatures, contributions of opposite sign can-
cel almost exactly; thus, the method becomes numerically
"noisy, " and in practice unusable unless some procedure
is sought to include only positive contributions. As one
of us has shown [10], it is possible to perform an exact
calculation including only even permutations by restrict-
ing the paths (Ro, R~, . . . R, , . . . , RM) to regions of the
configuration space in which the exact many-body den-

sity matrix p(Ro, R', t) ) 0 for 0 ( t ( P. In general,
the locations of the nodes of the true p(R, R', t) are not
known. Thus, in the restricted path integral Monte Carlo
(RPIMC) method one uses the nodes of a "trial" density
matrix pr(R, R', t); if the nodes of pr are substantially
correct, the method provides accurate thermodynamics for
Fermi systems. The RPIMC procedure has been applied
to the study of normal liquid 3He [11],using the nodes of
a free-particle density matrix; the error in energy due to
the restricted-path approximation can be estimated to be
less than 0.5 K per atom.

We now turn to our results. We performed PIMC
simulations for systems of 54 and 108 particles; we used
a pair-product approximation [9] as our high-temperature
density matrix p(R, R', r), and observed convergence
of the numerical estimates with 7 = 0.025 K '. We
obtained results for a single 3He particle in bulk 4He

and for a finite concentration (around 9%) of 3He atoms,
in the temperature range 0.250 ~ T ~ 2 K, at the 4He

equilibrium density (p4 = 0.0218 A. 3). For a single 3He

atom the calculation is exact, as one does not need
to antisymmetrize; the RPIMC method was adopted to
study systems with more than one He atom, with

nodal regions specified by the noninteracting density
matrix. This approximation is very accurate for the low
fermion densities which we have considered for the low
x part of the calculation, i.e., x below 10%. In Table I
we report the results for the 3He kinetic energy; the
data show little dependence on x or N, and even the
temperature dependence is small, at least below 1 K. If
we assume a Landau-Pomeranchuk form [3] for the 3He

TABLE I. 'He kinetic energy (in K), computed by PIMC, for
a He- He liquid mixture, at different temperatures and He
concentrations x. Statistical errors (one standard deviation), in
parentheses, are on the last digit.

T (K)

0.25
0.50
1.00
2.00
1.00
2.00

N =54
17.4(3)
18.1(3)
17.9(3)

17.7(2)
18.8(1)

N = 108

17.5(2)
17.5(3)
17.7(3)
18.2(4)
18.1(2)
18.7(1)

1/N
1/N
1/N
1/N

0.093
0.093

atom excitation spectrum, we expect the He kinetic
energy K3 (T) to depend on temperature as K3 (T) =
K3 (0) + n T Extr.apolation of our data yields K3 (0)
17.1 ~ 0.1 K and n = 0.8 ~ 0.1 K '. A check of the
consistency of our kinetic energy data can be obtained by
calculating the chemical potential of the single 3He atom
at T = 0; this can be done by expressing the free energy
change due to the replacement of one 4He atom with a
3He one as

4 dm
K (2)

where p, 4 is the He chemical potential, and K is the
kinetic energy of a helium atom of mass m3 ( m ~ m4.,
in deriving (2) we have taken advantage of the fact that
the derivative of the free energy with respect to the mass
is proportional to the kinetic energy. We estimated the
integral in (2) by means of a trapezoidal approximation;
for the 4He kinetic energy we used the value 14.3 ~
0.1 K, which we found for pure 4He. We used for p, 4

its experimental value (—7.14 K). We obtain, at T ~
0, p.3

= —2.6 ~ 0.2 K, consistent with the experimental
results [12] of about —2.75 K.

To gain further insight into the local environment
experienced by a single He particle embedded in liquid
4He, one can look at the local 4He density p34(r) in

the vicinity of the 3He impurity and compare it to the
4He density p44(r) in the vicinity of a 4He atom in pure
liquid He [9]. In Fig. 1 p34 and p44 are compared to the
corresponding local density p33 for pure liquid He [11]
at its equilibrium density (p3 = 0.016355 A. 3). The data
shown in Fig. 1, all at T = 250 mK, clearly show how
the local density in the vicinity of a single 3He particle
in liquid 4He (triangles) is very close to the one in the
vicinity of a 4He atom (dashed line), considerably larger
than the one in the vicinity of a 3He atom in pure liquid
3He (squares); thus, due to the interaction hard core, the
3He atom experiences a greater localization in liquid 4He,

which accounts for the increased kinetic energy.
The disagreement between the experimental result of

Ref. [7] and our theoretical estimate is disconcerting, as
we believe the latter to be very reliable, owing to the ac-
curacy of the model potential utilized and of the numerical
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FIG. 1. Dashed line: local density p44(r) in the vicinity of a
4He atom in liquid 4He at the equilibrium density. Triangles:
local 4He density p34(r) in the vicinity of a 'He atom embedded
in liquid 4He, at the 4He equilibrium density. Squares: 'He
density p&3(r) in the vicinity of a 'He atom in bulk liquid 'He
at the 3He equilibrium density. Statistical errors (one standard
deviation) are given by the sizes of symbols; they are not shown
for clarity for the dashed line, for which they are of the same
size as the triangles. All curves are at T = 250 mK.

technique adopted. It is worth mentioning that in a neutron
scattering experiment one probes the momentum distribu-
tion and infers the value of the kinetic energy from its sec-
ond moment; such a procedure is quite complicated, and it
is conceivable that the kinetic energy estimate could be al-
tered by a variety of factors experimentally hard to control.
For instance, as suggested also in Ref. [7], the momentum
distribution often features non-Gaussian tails, difficult to
detect experimentally but carrying enough weight to affect
significantly the estimate of the moments.

Let us now turn to the determination of the effective
mass of a 3He atom in liquid He via path integrals.
A single 'He atom should behave [3] as a well-defined
quasiparticle with a two-parameter excitation spectrum
&(p) = Ep + p /2m*. Under this assumption one can
show that the parameter m* is related, at low temperature,
to the long imaginary-time diffusion of the 3He particle
in configuration space, along a many-body path. More
precisely,

0.025

0.021—

0.017—
p C]

I I

3He 250mK
4He 250mK
'He 500mK
4He 500 mK

two isotopes. To study this effect quantitatively, we
performed an RPIMC simulation of a mixture made of
equal fractions of 4He and unpolarized 3He, for a total
of 108 particles, at a density of 0.0191 A 3, equal to
the average between the equilibrium density of the two
isotopes. The simulation box was chosen to be the set
of points (x, y, z) such that 0 ~ x, y ( L, 0 ( z ( 2L,
i.e., a rectangular parallelepiped, with periodic boundary
conditions, with L approximately equal to 14 A. We
initially separated the isotopes; i.e., all He atoms were
located in the region 0 ~ z ~ L, whereas He atoms
were in the region L ~ z ~ 2L. Then, as the simulation
proceeded, the particles were allowed to mix. We ran
the simulation for a sufficiently long time until a situation
characterized by stable density profiles of the two isotopes
in the z direction was reached [13].

Our results are shown in Fig. 2, where we compare
the density profile in the z direction for He, p3(z), and
He, p4(z), at the two temperatures which we considered,

i.e., 250 and 500 mK, and at saturated vapor pressure.
As a first comment, we note that even at the higher of
the two temperatures, where considerable mixing occurs
and where finite-size effects are more important due to
the proximity to the critical point, two separate phases
are nonetheless clearly identifiable, in remarkable qual-
itative agreement with experimental observation, despite
the relatively limited size of the system studied and the
RPIMC nodal approximation. Let us indicate by pz the
peak value of the density of the isotope ~He in the ~He-
rich phase region, and by p& its lowest density in the

He-rich phase region. At T = 250 mK p3 and p4 are
within 10% of the equilibrium density values (dashed
line in Fig. 2); on assuming that p~ and pi7 approximate
reasonably well the asymptotic values in the bulk mix-
tures, we can estimate the solubility ~& of "He in He

= 2 lim((r(P/2) —r(0)) )/Ph (3) 0.013—

where r(0), r(p/2) are the positions of the 3He particle at
the initial and middle slices of the many-particle path and
the average ( . ) is taken over all paths. We computed
m*, as given by (3) at the two temperatures T = 0.25 and
1 K, and observed no significant temperature dependence,
within statistical uncertainties; we found m /m = 2.3 ~
0.1, in agreement with experiments [6].

The results discussed so far pertain to the x ~ 0 limit;
we now address the question of the investigation of
the phase diagram of the isotopic liquid helium mix-
ture. As previously mentioned, below a temperature of
about 0.87 K, the mixture is experimentally observed to
separate into two coexisting phases, rich in one of the

2290

0.009—
Q

0.005—

0.001—
o &&

o

I I

10 o 15
z {A)

20 25 30

FIQ. 2. Equilibrium density profiles p3(z) for 3He and p4(z)
4He in the g direction of the simulation box, at T = 500
and 250 mK. The dotted line represents the total density
p(z) = pz(z) + p4(z) at T = 250 mK, which looks very similar
at T = 500 mK. The dashed line represents the equilibrium
density of pure 4He (p4) and of pure 'He (p3). Statistical
errors (one standard deviation) are smaller than the sizes of
the symbols.
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TABLE II. Solubility of 'He in 4He (g&) and of He in -'He

(~4), deduced by the density profiles of Fig. 2. Fourth and fifth
columns report experimental results. The total number of par-
ticles is )V' = 108, half for each isotope. Statistical errors (one
standard deviation), in parentheses, are on the last digit.

T (mK)

250
500

0.09(1)
0.27(2)

A'4

0.00(1)
0.18(2)

X~(exp)

0.10
0.22(1)

g4(exp)

0.00(1)
0.09(1)

as pz/(pz + pa ); the results are reported in Table II.
The estimates at T = 250 mK are in excellent agree-
ment with experimental determinations [2,12], whereas at
T = 500 mK the solubilities are overestimated, presum-
ably due to finite-size effects.

At T = 250 mK an interface between the two phases
appears well defined; its location is at g = 3 and 16 A and
its width ~, defined as the length of the g interval in which
0.1 p~ + 0.9p~ p~(z) 0.9p~ + 0.1p~, is of the or-
der of 10 A. As ground state Monte Carlo calculations
for a free 4He surface show [14], the interfacial width is
considerably reduced by the finite size of the simulation
box; thus, in the limit in which the size of the box along
the z direction becomes very large, we can expect the in-
terfacial width to be greater than 10 A, i.e., significantly
larger than the width of a liquid 4He free surface, which is
about 4—5 A, as experimentally measured by He scat-
tering [15]. For a large surface, the interfacial width
is not well defined, due to roughening caused by long-
wavelength ripplons; however, it is meaningful for finite
systems in confined geometries, where long-wavelength
ripplons are suppressed.

This suggests a possible interpretation of a recent,
intriguing experiment [16] in which an isotopic liquid
helium mixture was placed inside highly porous silica
aerogel, which forms an essentially random network of
interconnected strands of diameter of about 30 A. . In this
experimental setting, superfIuidity was detected at a 4He

concentration as low as 4%, at a temperature of the order
of 0.3 K, thus well above the 3He superfluid transition
temperature, which is in the mK range. Kim, Ma, and
Chan argue that this surprising result could be explained
in terms of an enhanced 4He solubility in 3He, caused in
some fashion by the microstructure of the silica aeroge1
network [16].

Our results indicate that a simpler picture can be consid-
ered. At low 4He concentrations He atoms, which have
a greater mass and therefore can bind more effectively to
aerogel, adhere to the randomly distributed aerogel strands,
forming isolated 4He "domains. " In the absence of 3He,
He superAuidity is confined to these domains, i.e., to the

4He-coated surfaces of the silica strands; the presence of
3He, on the other hand, increases the effective thickness
of the 4He film coating the strands with respect to what
it would be if 3He were absent, thereby greatly enhancing
the tunneling rate of 4He atoms between separate 4He do-

mains. This can establish phase coherence and give rise to
superAuidity throughout the sample. In other words, there
is no greater solubility of 4He in 3He in aerogel, but sim-

ply a larger fraction of the system consists of a 4He-~He
interfacial region. More work will be needed to establish
this conclusion more quantitatively, including a systematic
investigation of finite-size effects as well as of the sensi-
tivity of the results upon changes in the trial nodal regions;
however, the results presented in this work show how the
PIMC formalism provides an effective framework to in-
vestigate quantitatively this type of phenomena.
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