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Dynamics of Glasslike Transitions in a Quasi-Two-Dimensional System
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Transverse self-diffusion of field-induced magnetic colloidal chains is measured using real-space
imaging. It has been found that the mean-square displacement (Ar~) depends on the aligning field
H and displays two different behaviors. In short times (Ar2) is subdiffusive, whereas in long times
(Ar2) exhibits normal diffusion. The characteristic time separating the two time regimes diverges
exponentially with H, indicating fast frozen-in density fluctuations in the system. Our experimental
results deviate significantly from the predictions of mode-coupling theory.

PACS numbers: 64.70.Pf, 51.20.+d, 61.50.—f, 63.20.—e

In this Letter we present an experimental study of trans-
verse self-diffusion of magnetic chains in the presence of
an aligning magnetic field H. The unique features of the
experiment are that the motion of the chains is sufficiently
slow, allowing video imaging of "microscopic' dynamics,
and that the interactions between the chains are continu-
ously tunable, allowing exploration of scaling behaviors
over extended time scales. It was found that in short times
the array of magnetic chains behaves like a solid, whereas
in long times it behaves like a liquid. The characteristic
time t* separating the two regimes is of the order of a sec-
ond in weak fields and increases exponentially with H. It
appears that the conventional hexatic phase, expected in a
two-dimensional 2D system, is preempted by a glass tran-
sition, and the system possesses no long-range positional
and orientational orders in the strong-field limit.

Being imbedded in a quasi-2D space, the structure
of an array of magnetic chains is susceptible to small
disturbances. Thermal fIuctuations, pinning due to walls,
and randomness in the coupling constant between the
chains all conspire to make the lattice disordered. In
this regard, our system is somewhat similar to that of
the Abrikosov lattice in type-II superconductors, which
has attracted a great deal of attention [1]. An intriguing
issue which is at the heart of all this research is the effect
of the disorders on the dynamics of line objects [2]. An
understanding of how these line objects move is not only
academically challenging but also practically useful in
producing robust superconductors and controlling defect
motions in liquid crystals.

The system under investigation is an aqueous suspen-
sion of magnetic particles of 0.8 p, m in diameter and 2%
in concentration [3]. The sample was confined between
two parallel sapphire plates separated by 12.5 p, m and
placed in a long solenoid with H normal to the plates. In
the H field individual particles acquire a magnetic dipole
moment ~ —H. If H is strong enough, the particle-
particle interaction overwhelms the thermal energy, caus-
ing them to assemble into an array of chains parallel to
the field. For this system, the onset of chain formation
occurs at -6 Oe. Once formed the diameter of the chains

is approximately equal to a particle diameter and has poly-
dispersity of -20%, as viewed under a microscope. The
chains interact via a repulsive dipole-dipole interaction,
which can be tuned continuously by varying H. Using
small-angle light scattering and video imaging [4], it was
found that the spatial arrangement of the chains depends
on both H and H, the ramping rate of the field. By vary-
ing H abruptly the lattice is disordered, whereas by vary-
ing H sufficiently slowly, H —1 Oe/h, a fairly regular
lattice can be formed. In the current experiment we used
this slow ramping rate, and H was held constant during
measurements.

The end positions of the magnetic chains were imaged
using an optical microscope (500&) and recorded in real
time (1 image/s) using a computer. The area studied
(70 X 100 p, m2) is very small compared to the size
of the sample which is -1 cm . A particle tracing
software allows us to follow the motion of -100 chains
simultaneously and to determine their positions with an
accuracy of ~1 pixel (-0.3 p, m).

Figures l(a) and 1(b) show two configurations of the
magnetic chains for H = 8 and 25 Oe, respectively, As
can be seen, despite a weak field dependence of both
the radius and the density of the chains, the structure
of the array changes remarkably as H increases. For
low fields, the end positions of the chains are almost
uncorrelated, corresponding to a liquid. For high fields,
on the other hand, the local crystallographic axes are
clearly identifiable. For H ) 30 Oe, the system is frozen
with no structural rearrangement upon further increase of
H. In this frozen state, the system possesses no long-
range positional and orientational orders, as indicated by
the exponential decay of the corresponding correlation
functions and short correlation lengths, which are of the
order of a lattice spacing a.

From a sequence of pictures taken at a fixed H, we
calculated the probability density function (PDF) P(x, t).
Physically, P(x, t) is the conditional probability of finding
a chain at a position x at time t, when the chain is at
x = 0 for t = 0. Here since the system is translationally
invariant in both space and time, the origins of x and t
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are arbitrary. We found that in order to have reliable
measurement of the PDF the time ime average alone is
not adequate. This is particularly the f hcase or igh

e s, where individual chains only explore a limited
con gurational space, giving rise to nonergodic behavior.
To overcome irregularities in the data, an ensemble of
measurements were carried out and P x, t was o tained
using both the time and the ensemble averages. The PDF

in Fi . 1. For
at H = 8 and 25 Oe are shown underneath thee pictures
in ig. . For the low field, P(x, t) is approximatel a
Gaussisian in x and its amplitude decreases as t '~ . In

imaey a

comparison, for the high field, P(x, t) is strongly non-
Gaussian and its amplitude decays by less than 40% over
several thousand seconds. The motion of the chains,
hence the density fluctuations, is essentially frozen at
long times.

For an isotropic system, the PDF along th dg e x &rection

s ou e the same as along the y direction, P(x, ) =
~y, t~. is is indeed the case in our measurements. The

x, t

measured PDF allows for the calculation of the mean-
square displacement (MSD) (Ar (t)) of a tracer chain.
Figure 2(a) shows a set of MSD measurements for 8 (
H ~ 30 Oe. Within this range of H, the MSD at long
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FIG. 1. SStructure and dynamics of magnetic chains. The

25 Oe.
measurements are for magnetic fi ld

e. The chains become more ordered as 0 increases.
Correspondingly, the probability density P(x, t) decays rapidl

the high field.
ereas', x, t& ecays slowly for

FIG. 2. The MSD vs tiime. (a) The measurements were
performed at H = 8 (open circles), 10 (open triangles, 12
(plusses), 14 (crosses), 16 (open diamonds), 18 (stars), 20 (solid
squares), 25 (solid circles), and 3 (solid triangles). (b) The
scaling plot of MSD vs t/t* By rescaling the .t axis the long-
time diffusion can be collapsed onto a sin le c
slo~e of 0.97. To . . he intermediate-time regime also scales with a
common slope of -0.2.
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times changes by nearly 3 orders of magnitude. For H ~
18 Oe, all the curves show a characteristic S shape; the
MSD increases rapidly in short times, then slows down
in intermediate times, and finally increases again at long
times. In the short-time regime, the initial slope of the
MSD decreases with H. If a power-law (Ar2) —r is
assumed, which has only limited range, the exponent u
is found to be —1 for weak fields, and it levels off at
-0.2 as H approaches 30 Oe. The short-time diffusion,
therefore, changes smoothly from normal diffusion to
subdiffusion. The slowing down of transverse diffusion
in the intermediate times, forming a plateau in the MSD,
appears to be ubiquitous and its range increases markedly
with the field. For H ~ 18 Oe, the MSD is completely
dominated by the plateau regime even for times as long
as 2000 s. However, based on the trend seen for the
low fields, it is reasonable to extrapolate that the long-
time diffusion behavior may still persist, manifesting
itself at a time scale that is not reached by the current
measurements.

The similarity in the MSD at long times motivates a
scaling plot of (Ar2(t)) vs a reduced time t/t', where the
characteristic time t* is a function of H. On the log-log
plot this scaling procedure is equivalent to a horizontal
shift of the individual curves in Fig. 2(a) by an amount
such that the MSD at long times collapses onto a single
curve. As shown in Fig. 2(b), over two decades in t/t",
an excellent collapse of the data is obtained, and the
master curve has a slope of 0.97 ~ 0.03 as delineated
by the solid line in the figure. The slope is close to
unity, suggesting that the self-diffusion on large times
or length scales is uncorrelated. It is interesting that
the above scaling procedure reveals an additional power-
law behavior for the intermediate times [5]. For 10 ~ ~
t/t* ( 10o, all the data seem to follow the same trend
with a common slope of -0.2, as shown by the dashed
line. We noted that the crossover from the intermediate
to the long-time behaviors appears to be sharp on this

scaling plot with a crossover length (Arc) —1 p, m.
Since the average spacing between the chains is a =
7 p, m, we found that (Ere)/a2 = 14%, which coincides
remarkably well with the Lindemann s melting criterion
for 3D solids. The result is somewhat surprising since one
expects that thermal fIuctuations for our quasi-2D system
should be more significant than in 3D; hence a tighter
bound is anticipated.

Physically, t' can be identified as the escape time of
a typical chain from its local potential energy minimum.
The t' was found to increase exponentially with H, and
the behavior can be described by an Arrhenius law,

rp exp(AE/k~T), where AE is the typical energy
barrier. Because of long-range dipole-dipole interactions,
the relevant energy scale is AE —v g H2/a3, where v
and ~ are the volume and the magnetic susceptibility
of the chain. The time to may be thought of as the
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FIG. 3.The semilogarithmic plot of t' and ~ vs H2. The closed
circles are for t" and the open circles are for r. The solid
and the dashed lines are fits to the Arrhenius law. The inset
shows the semilogarithmic plot of the long-time self-diffusion
coefficient D vs H2.

collision time of the chain with the energy barrier,
and the relevant time scale is d2/Do, where d and

Do are the diameter and the free diffusion constant of
the chain. The relation r = rpe xp(cH 2) is well borne
out by the plot (solid circles) in Fig. 3. It was found
that c(=—b.E/kBTH2) = 0.012 Oe 2 and to ——6 s; both
agree well with the theoretical estimates taking g = 0.07
and Do = 10 9 cm2/s which are measured independently.
The exponential increase in t' prevents the system from
seeking the potential energy minimum effectively, causing
it to be trapped in a metastable, disordered glassy state in
high fields t4].

We have also calculated the long-time self-diffusion
coefficient D by analyzing the MSD data for t ) t".
As shown in the inset of Fig. 3, D decreases by nearly
2 orders of magnitude as H increases from 8 to 18 Oe.
Quantitatively, D(H) can also be described by an Arrhe-
nius law D(H) = Dp exp( AE/ks—T) = Do exp( —cH ),
and the parameters Do and c turn out to be nearly identical
to those used for describing t*. Thus we have achieved a
fit to D(H) with no adjustable parameters, as shown by
the solid line in the inset. The simple equation describing
the field dependence of both t' and D is reassuring, and
suggests that the dynamics of the system is governed by
only a few parameters.

What is the physical mechanism that produces the
subdiffusive behavior in short and intermediate times?
Neglecting disorder, the phenomenon may be modeled
as thermal motion of a lattice "atom" which is coupled
to long wavelength collective modes. The problem can
be solved in a systematic fashion using a Langevin
equation. In two dimensions it can be shown that the
MSD diverges logarithmically in time (b, r (t)) —ln(t),
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implying the absence of long-range translational order in

2D. The predicted logarithmic time dependence, however,
is inconsistent with our observations and suggests that
disorder in the lattice structure and thermally activated
cluster motions may also be important.

The short translational and orientational correlation
lengths and fast frozen-in density fluctuations are strongly
suggestive that our system undergoes a glass transition
as H increases. We have made an attempt to compare
our observations with the mode-coupling theory (MCT)
[6], which makes detailed predictions for the dynamics
near a glass transition. The hallmark of the MCT is the
prediction of two characteristic decays, the n and the P
processes. The u decay is associated with the long-time
relaxation, signaling the breakdown of particle cages and
the onset of long-distance diffusion of a tracer particle.
On the other hand, the P decay is associated with short
and intermediate time scales, rejecting a relatively slow
local motion of the particle. Our observed transverse self-
diffusion of magnetic chains falls naturally into the above
classification of the two relaxation processes.

Within the MCT it was further shown that the self-part
of the intermediate scattering function (SISF) F'(q, t)—
(g; exp[iq . (r;(t) —r, (0))]) decays in two steps, in ac-
cordance with the aforementioned n and P processes.
The crossover from the P to the n relaxation forms a
plateau whose width increases markedly as the glass tran-
sition is approached from the liquid side. In light of this,
we have constructed the SISF by taking Fourier trans-
formations of the measured PDF. For convenience, the
wave number was set to q = 27r/a, which corresponds to
the first peak in the static structure factor. Figure 4 shows
nine different runs for 8 ~ H ~ 30 Oe. Unlike the MSD

data, the SISF does not exhibit sharp features that can be
identified as crossovers from the short-time to the long-
time dynamics. The SISF can be approximately fit to
a stretched-exponential function F'(q, t) = exp[ —(t/r)i']
with y = 0.5 ~ 0.1 for all different runs. The relaxation
time ~, on the other hand, depends critically on H and
shows a similar H dependence as t*, as indicated by the
open circles in Fig. 3. Here 7- is about a factor of 10
greater than t*, which may be expected since ~ is the dif-
fusion time on the scale of a determined by the inverse
of the wave number q, whereas t' is the diffusion time
on the scale of a fraction of a determined by the Linde-
mann's criterion.

In conclusion, the dynamics of a glass transition in a
quasi-2D system has been studied from a different, yet
complementary, point of view, in comparison with the
more traditional scattering techniques [7,8]. The self-
diffusion measurements show clearly the existence of the
caging effect, resulting from the long-range interactions
of the magnetic chains. However, the observed caging
effect does not cause a two-step relaxation in the SISF as
commonly seen for 3D glassy systems [7]. A plausible
explanation for the absence of the plateau regions in the
SISF may be a result of thermal activation, which plays a
significant role in this quasi-2D system.
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research is supported by the American Chemical Society
under Grant No. PRF 26567-AC9.
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FIG. 4. The SISF F'(q, t) vs time t The use of the.
symbols are the same as in Fig. 2(a) for different H Typical.
uncertainties in the SISF are about 20%%uo. The solid lines are
fits to a stretched exponential function F'(q, t) = exp[ —(t/r)i'],
with y —0.5.
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