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Core-Excited States of AC Hypernuclei Formed in the (m+, E+) reaction
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A spectroscopic study of the z C hypernucleus by the (m+, K+) reaction has been performed using
a new superconducting kaon spectrometer (INS-SKS) at the KEK 12 GeV Proton Synchrotron with an

energy resolution of 2 MeV (FWHM). In addition to two prominent peaks which correspond to the s
and p orbitals of a A hyperon, for the first time two smaller peaks were clearly observed at excitation
energies of 2.6 and 6.9 MeV. These two peaks are interpreted as states where the "C excited core and
a A hyperon in the s orbit are weakly coupled. The excitation energies and the cross sections of these
peaks provide information on the AN interaction.

PACS numbers: 21.80.+a, 25.80.Hp

Spectroscopy of hypernuclei provides invaluable infor-
mation on hadronic many-body systems and on the na-
ture of hadronic interactions in the nucleus. One of the
most important aims of spectroscopic studies is the in-
vestigation of the hyperon-nucleon interaction through the
structure of hypernuclei. Since it is not easy to obtain hy-
peron beams, investigation of the hyperon-nucleon inter-
action by means of hypernuclear spectroscopy has great
importance. In particular, A hypernuclei afford promis-
ing opportunities for investigation because narrow intrin-
sic widths of their bound states are expected.

Recently, a new generation of hypernuclear experi-
ments has started using the (7r+, K ) reaction, in which
high-spin bound states of A hypernuclei are preferentially
populated due to the large momentum transfer. The BNL
group [1,2] first demonstrated A hyperon shell structure
in A hypernuclei from &Be to ~ Y in the (sr+, K ) re-
action; later z C and A Fe were also studied at the KEK
12 GeV Proton Synchrotron (PS) [3]. Those experiments,
together with recent theoretical investigations [4—6], have
established the value of the (m+, K+) reaction for study-
ing bound states of A hypernuclei.

An intensive shell model analysis of A binding energies
for p-shell hypernuclei was carried out using 12 binding
energy data available at that time by Gal, Soper, and
Dalitz [7]. A comprehensive shell-model approach was
developed for p-shell A hypernuclei produced by the
(K, ~ ) reaction [8]. Spin dependence of the AN effec-
tive interaction was further examined with more data in
the same framework [9]. Recently, the hyperon-nucleon
interaction has been theoretically investigated based on

meson-exchange models and quark models. Among them,
phenomenological interaction models by the Nijmegen
group [10] and by the Jiilich group [11] provide the ba-
sis for calculating hypernuclear structures starting from
the two-body interaction in free space. Using these inter-
actions, A hypernuclear properties were calculated with
a G-matrix method and various interaction models were
compared to each other [12,13]. The A 0 A hypernuclear
structure was also studied using the Jiilich potentials [14].
The spectroscopic data of hypernuclei now can be used
to impose strong constraints on the framework of the AN
interaction. In this regard, high-quality spectroscopy with
good energy resolution is greatly needed for investigation
of bound hypernuclear states.

Intending to take full advantage of the (7r+, K+)
reaction, a superconducting kaon spectrometer system
(INS-SKS) [15] has been constructed at the KEK 12 GeV
PS, and a spectroscopic study of A hypernuclei has been
conducted. The present Letter reports on a high-quality

z C hypernuclear spectrum with a better than 2 MeV
(FWHM) resolution and discusses its relevance to the AN
interaction.

A 1.06 GeV/c pion beam was delivered to a 0.89 g/cm~
natural carbon target at the K6 beam channel located in the
north experimental area of the KEK 12 GeV PS. The pion
beam intensity was typically 3 x 106/spill, where a spill
interval was 4 s and its duration 1.2 s. The present spec-
trometer system consists of two independent spectrometers
as shown in Fig. 1: one a beam spectrometer that mea-
sures incident pion momentum particle by particle and the
other a scattering particle spectrometer (SKS) which deter-
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FIG. 1. Ex erxperimental setup of the SKS se S spectrometer system.
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TABLE I. Excitation energies and cross sections for AC hypernuclear states measured in the (sr+, K ) reaction at p
1.06 GeV/c. The cross sections are those integrated from 2 to 14 deg by correcting the spectrometer angular acceptance.

Peak

No. 1

No. 2
No. 3
No. 4

State
assignment

1 l

(Iz )
(»)
2+

MHy —Mp
(MeV)

184.02
186.60
190.91
194.70

Excitation
energy (MeV)

0
2.58 ~ 0.17
6.89 ~ 0.42
10.68 ~ 0.12

Peak
width (MeV)

1.9 ~ 0.1

1.9 ~ 0.1

3.5 ~ 0.9
2.6 ~ 0.2

Integrated cross section (pb)
(2' ~ 6 ~ 14')

0.69 + 0.04
0.17 ~ 0.02
0.19 ~ 0.02
0.88 ~ 0.06

close to corresponding states of the core nucleus "C. The
observed excitation energies of the two peaks are close
to those of 1/2 and 3/2& states of the "C core, as
illustrated in Fig. 3. In addition, the cross sections of A
hypernuclear states are to first order proportional to the

p3/p or p] jz neutron hole strengths of the core "C nucleus,
since the (sr+, K+) reaction populates A hypernuclear
states having a neutron-hole A-particle configuration.
These "C excited states are experimentally known to
have p3yz neutron hole strengths of (10—25)% by neutron
pickup reactions such as (p, d) and ( He, n) [19]. As
seen in the table, the newly identified peaks at 2.6 and
6.9 MeV both carry intensities about 25% of those of
the ground state peak, similar to the spectroscopic factors
of the 1/2 and 3/2z states in "C. Considering the
excitation energies and cross sections of the two small
peaks, the peaks can be interpreted as corresponding to
states in which a A hyperon in the s orbital and the "C
excited states at 2.0 MeV (1/2 ) and 4.8 MeV (3/2q ), are
weakly coupled. Furthermore, the observed spectrum was
found in agreement with a recent distorted wave impulse
approximation calculation [18], both for the prominent
and for the smaller peaks. Spin-parities of the states
corresponding to the two small peaks were tentatively
assigned, based on the comparison of the present spectrum
with the calculated one and the above considerations.

Core-excited hypernuclear states in AC were not seen
in a previous experiment using the (K, vr ) reaction [20],
but were later reported in the stopped (K, vr ) reaction
on '~C [21]. The I& and 13 core excited states were
also assumed in order to account for excess yield between
the two prominent peaks in the (sr+, K ) reaction [22].
The present spectrum establishes the two peaks at 2.6
and 6.9 MeV excitation energies. However, the excitation
energies of the 1& and 13 states are considerably higher
than those expected in the limit of weak coupling. The
deviation is thought to be due to the AN interaction
or to a new mechanism that excites other hypernuclear
states around those energies. It was pointed out that
the excitation energies of the 1 states depended on the
ANN parameters [7]. We note, however, that it is not
easy to explain these high excitation energies by the
"standard parameters" for the AN interaction, with which
p-shell hypernuclei were intensively investigated based
on realistic shell-model wave functions [9,23].

Recently, production and structure of p-shell A hyper-
nuclei by the (vr, K+) and (K, ~ ) reactions was in-
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vestigated by Itonaga et al. [18] with configuration-mixed
shell model wave functions. They calculated the hyper-
nuclear properties by diagonalizing the Hamiltonian 0 =

(Co hen —Kura th)
Hz + tA + glA sA + g vA~, which consists
of the Cohen-Kurath interaction, the A kinetic energy, the
A spin-orbit potential, and the A-nucleon potential and
obtained good agreement with recent experimental data.
The calculation adopted the A-nucleon potential con-
structed from a phenomenological hyperon-nucleon inter-
action (Nijmegen D). Properties of light A hypernuclei
were further studied using different hyperon-nucleon in-
teractions such as Jiilich A (JA), Jiilich 8 (JB), Nijmegen
F (NF), and Nijmegen soft core (NSC) interactions [13].
These investigations revealed that spectroscopic proper-
ties of A hypernuclei strongly depend on the choice of in-
teraction model. Such an investigation was recently per-
formed for the A C hypernucleus, and cross sections and
excitation energies of the 1q and 13 states were calculated
with the four model interactions [24]. The cross sections
with the JA, NF, and NSC interactions were compara-
ble with the present values, but those with JB resulted in
unreasonably large values. On the other hand, the result
with the JA, JB, and NF interactions gave almost unity
for ratios between excitation energies of the ~ C core ex-
cited states and those of corresponding "C excited states,
while the NSC potential resulted in relat&vely large ex-

7/2 6A8 MeV
(1 3 } 6.89 MeV

3/2z 4.80 MeV

5/2 4.32 MeV

2.58 MeV

2.00 MeV

0.00 MeV 0.0 MeV

12
A

FIG. 3. Correspondence of the "C energy levels and observed
& C hypernuclear states based on weak coupling of a A hyperon
to the nuclear core.
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citation energies consistent with the present experimental
values. This may be due to a large ratio of spin-singlet to
spin-triplet strength, which characterizes the NSC poten-
tial compared with the other models. The large excitation
energies seem to favor stronger spin-singlet strength of
the AN interaction. This is in accord with the fact that
the ground states of ~H and ~He have spin-parity 0+.

The 6.9 MeV peak could be composite in view of its
width, which is broader than the instrumental resolution.
A possible ~ C hypernuclear state that corresponds to the
6.48 MeV 7/2 state in "C can be a candidate for strength
in addition to that of the 13 state. For example, the
7/2 state could be connected to the 3 state of ~C at
around 6 MeV excitation if f7t2 neutron hole strength in
that state is large enough or if a two-step reaction that
involves collective excitation plays a considerable role in
the (7r, K ) reaction. It would be a future issue, however,
whether such a process contributes to the extra intensity
comparable to that of the 13 state. If we consider this
large width as due to compositness of two equal-strength
peaks, the 13 excitation energy could be either lowered or
raised by 0.7 MeV from the value quoted in the table.

The width of the No. 4 peak is found to be broader than
the spectrometer resolution. This observation is consistent
with a theoretical calculation that predicts excitation of
2&+ (10.0 MeV), 3 t (10.1 MeV), 22 (10.6 MeV), 0t+

(10.9 MeV), and 23+ (11.8 MeV) states by the (sr+, K+)
reaction [18]. Since the 2t" and 2& states are predicted to
be predominant among them with almost equal strengths
[18], the No. 4 peak was fitted assuming two Gaussians
with equal intensity and the 2 MeV resolution. The
level spacing between the two 2+ states in the peak
was then derived to be 1.2 ~ 0.5 MeV under the above
assumption. The two 2+ states have configurations of
either "C(3/2t ) p3t2 or "C(3/2& ) S p, ~2, respectively,
and the splitting of these two states can be regarded
as partly due to the spin-orbit interaction. The value is
consistent with the difference between excitation energies
of the two 2+ states that was obtained for ~ C [25].

In summary, a high quality z C hypernuclear spectrum
with an energy resolution better than 2 MeV has been
obtained for the first time. It clearly reveals core excited
A hypernuclear states, which can be interpreted as core
excited ones of zC. The present data possibly impose
constraints on the effective hyperon-nucleon potential.
Further systematic spectroscopy of light A hypernuclei
with good resolution should further enhance and improve
our knowledge of the AN interaction and structure of A
hypernuclei.
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