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Instability of Langmuir Waves in Plasma Irradiated by Directed Gamma Rays
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In this Letter we investigate the possibility of Langmuir turbulence generation by directed gamma
rays penetrating a background plasma. Turbulence is generated because Compton scattering creates
superthermal electrons whose distribution can be unstable to the Cherenkov radiation of Langmuir
waves. Using the Klein-Nishina cross section for relativistic Compton scattering, we calculate the
momentum distribution of recoil electrons and derive the increment of instability for nonmagnetized
plasma. The instability appears when there is a sufficiently narrow bump, for example, annihilation line
hv = m, c with a width less than 0.3 m, c, in the gamma spectrum.
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E2 —2E E2
+(e, E) = 2+ + (3)

Photons with energy e can create recoil electrons with
kinetic energy E in the range 0 ( E ( E,„(e) = 2e /
(1 + 2e). The energy distribution function of electrons
produced by photons in the energy band (e, e + d e)
during time interval At is

It is well known that a directed beam of superthermal
electrons generates Langmuir turbulence in a plasma
[1—3]. In this Letter we investigate the possibility of
Langmuir turbulence generation by directed gamma
rays. We consider a nonmagnetic fully ionized hydrogen
plasma at nonrelativistic temperatures.

First we find the momentum distribution of recoil
electrons. We then derive the increment of a Langmuir
wave with arbitrary wave vector k. Then we consider in
detail the case of the annihilation line and find the most
unstable modes and the maximum linewidth for which the
distribution of recoil electrons is unstable.

We consider recoil electrons with kinetic energy E »
Er where Er = ksT, /m, c is the electron thermal energy
(we measure energy in units of m, c2 and momentum in
units of m, c). We assume that initially the electrons
are at rest. The kinetic energy gained by an electron on
scattering a photon of initial energy e at an angle o. is

e2(1 —cosct)
1 + e(1 —cosa. )

The relativistic differential cross section of photons scat-
tering on an electron at rest can be written in the form [4]

3 1o.,(E) = —o.r —'It(e, E), (2)

where err = (8'/3) (e~/m, c~)2 is the Thomson cross
section, and

n(e, E) dE = F» n, b, t cr, (6)

where o. = f o., w( )ed eis the average cross section,
tr, = fo

'" o, (E)dE .being the total cross section for
photons with energy e.

We consider a directed stream of photons and therefore
the momentum distribution of the recoil electrons is
axially symmetric. If the beam of photons propagates
along the g axis then instead of e and E we use new
variables: p„ the g component of the momentum, and p,
the absolute value of the momentum. p, is given by

1)
p, =E 1+— p = QE2+ 2E. (7)

The distribution of the recoil electrons in p and p, is
related to n(e, E) by

n(p p. ) = B(e, E) E(E + 1)
n e, E n e, E

&(p, p, )
'

eQE(E + 2)

(8)

where
~ B(e, E)/B(p, p, ) ~

is the Jacobian of the coordinate
transformation. The axially symmetric distribution of
the recoil electrons in momentum space is given by
n(p) = n(p, p, )/2vrp. In further calculations we use the
normalized distribution function

f(p) = f(1)dp = 1

radiation, and in our calculations we use the Gaussian
profile

w(e) = 1
e

—(~ —~0)'/'~'

~sr ~
'

The density of recoil electrons in the plasma is given
by

Emax (&)

n(e, E) = F»w(e)d tn, o,(E), -(4)

where n, is the density of electrons in the plasma, F~ is
the total Ilux of photons, and w(e) describes the shape
of the radiation spectrum. We consider a line-shaped

From Eqs. (4), (6), and (8), we get

3 o.r 'P(e, E)
16m o E(E + 1)

(10)
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+k
4m' o)p)e n,2 2

k2m, c

w here co~&
= $4mn, e2/m, is the plasma frequency. In

the calculations below we use Eq. (10) for f(p), which is
valid only for electrons with energy E && ET. Therefore
we consider only E ) 10 5(k&T, /1 eV).

Langmuir waves with k ) 3'~)/vT, where vr =
QksT, /m, , cannot propagate because of Landau damping.

Even when the photon spectrum forms a narrow line,
the momentum distribution of the recoil electrons is very
different from the collimated beam case. The distribution
of the recoil electrons extends from the thermal energy ET
to the maximal possible energy E „that can be transferred
by gamma rays, and the scattered electrons can move in a
large range of angles with respect to the photon direction,
0 ( 8 ( 7r/2 (see Fig. 1). The distribution produced by
a narrow photon line is concentrated on the surface of an
ellipsoid, in momentum space, which is axially symmetric
around the direction of the photon beam. The distribution
function f(p) has a narrow bump along any straight line
from the coordinate center which is not perpendicular to
the p, axis. This bump is narrowest and highest at small
p„when the line is at a small angle to p .

An anisotropic electron distribution forming a bump
in momentum space can be unstable to plasma wave
generation [5]. In our case the distribution is spread over
a large range of energy and a large range of angles. The
growth rate of a Langmuir wave with the frequency co and
the wave vector k is (e.g. , [6])
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FIG. 1. An example of a distribution of recoil electrons n(p)
for eo = 1, 5 = 0.05. The distribution is axially symmetric
around the p, axis; therefore it is enough to present the
distribution only on the (p„p, ) plane. There are 5000 points
in this figure, representing recoil electrons with momenta within
a thin layer ~p~( ( ApY projected on the (p, p, ) plane. p, and

p are taken in units of p, „=E,„(1 + 1/e) and p
$2E(1 —E/E „),respectively.

Only k ( 103k, (k&T, /I eV) '/2 is hereafter considered,
where k, = co~)/c is the minimum wave number of a
wave which can be in the Cherenkov resonance. In this
domain k && au~)/vr and the dispersion relation is given
by cu = re~) [5] (we neglect the thermal correction to the
plasma frequency). In this approximation the Cherenkov
resonance condition, which is taken into account by the 6
function in Eq. (11), takes the form u(p) = uo = co~&/ck.

Using Eq. (10) we obtain

Bf 3 or 1 - Be dw B'Ir - BE B'(I'k. 'Il' + w + k w
Bp 16' D E(E +. 1) Bp de Be Bp BE

2E+1
E(E + 1)

(12)

Let us introduce the notation u = k p/k(E + 1) = k . v/k, and let 8 be the angle between k and the z axis. Then

3 OT k 6 1 B I dw
u 1+ — —cosO w +% + uw

167r o E(E + 1) E e Be de BE
Bf
Bp

(13)

In order to simplify the integration in Eq. (11) we change the integration variables to u, e, and E, instead of p. To
calculate the Jacobian of this transformation we choose the x axis in the (k, z) plane (this can be done when k is not
parallel to z). Then we get

B(e, u, E)
B(p., j,, p, )

e'( pY~ sin0

E(E + 1)' (14)

When 0 = 0, m the Jacobian is equal to zero and the variables
only the case where 0 4 0, m.

To get the explicit form of the Jacobian we express pY as a

a, u, and E are then not independent. We will consider

function of a, u, and E,
1 2 1

p sin 8 = (E + 2E) sin 6 + 2uE(E + 1) 1 + — cos8 —E 1 + — —u (E + 1) .
8 8

The expression (11) for the increment can now be rewritten in the form

(15)

(16)
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because the transformation from the varia es e, u,ui s ~e u E to (p, py, p ) is in thewhere an additional factor of 2 appears because e ra
e dimensionless quantity 1(k, 8) is given y

this inform

k Bf E(E+ 1)
k I3 e2~p ~sin8Bi

E . 13 for k . 8f/8 p, we rewrite Eq. (18) in the formTaking into account (A8) and substituting Eq. (13 or . p,

ratio 2.1. Th

cu k Bf E(E + 1)2du de dE
1(k, 0) =

k k Bp e2) p~( sin8

the sim le substitution u = up in the integral and by an appropriate choicey ' p

~ ~

~g ' ' ' '' p
plasma wave, an ed th range of energies of the resonant electrons, E~ e

ation we have

where

I(k, 8) = 3 OT
8p

16m. o.
F(e t E)dE

, (.) 4(E. —E)(E —E )
'

F(e, E) = 1 d~ uow(E + 1)
1 + — —cosO w + + +

E 8

2E+1
E(E + 1)

(20)

d E and A are given by (A9) and (A10).an )p an
a new variableIn the calculations it is convenient to use a ne

s which is related to e and E by

E(~, s) = EI(e) cos s + E2(e) sin s.
Denoting rI~(e, s) = F[e,E(e, s)], we obtain

(21)

m/23 OT
Rp8~ o

t(k, e) = tIi(e, s)ds. (22)
o

Unstable plasma waves have positiv y~.e -. The oc-
currence of instability is illustrated in Fig. 2 for an

1 y
= 1',. The most unstable wavesannihilation line

propagate along t e g axis1 h s (0 = 0) and have wave num-
bers near the minimum possible value k;„= cupI/v
k, (tI~„/c), w ere U~» == 0.8c is the maximum elec-

n velocit . Waves with k & k;„cannot be m the
and thereforeCherenkov resonance with recoil electrons an

the positive increment falls off ste p ye 1 towards small k
and becomes zero at k = k;„. The in yinstabilit exists only

w 6 ~ 0.3. Theif the annihilation line is rather narrow,
—25n. n,, is attained for anlargeSt inCrement ym»/tuI, I
—2 n*

extremely narrow line, 5 = 0.
Plasma turbulence generated by recoil electrons has an

interesting speciatin s ecial feature which is illustrated in ig.

in the opposite direction (at angle 8
~ ~ ) ~ 2. Unstable

waves with 9 ) vr/2 have higher wave numbers and are
generated by electrons with lower energy.

The instability develops in a wide range of parameters
k, 0; however, everywhere outside of
of the highest increment (near 9 = 0) the growth rate of
unstable waves is much smaller than y „.
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FIG. 2 Th increment of Langmuir waves propagating along
xis (0 = 0) as a function of wave numbe
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e = 1). Several curvesth case of the annihilation line (eo =te case o
1 5=0; (2), h=are presen ented for different linewidth 5: ( ),

in units of0.1; and y3g, 5 = 0.3. Wave numbers are taken in f
kc = cd@I/c.
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FIG. 3. Unstable plasma waves at anglen les 9 = m 4(1) and
8 = 3'/4 (2) for extremely narrow annihilation line (eo =
6 =0).
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In summary, the only condition for the instability
to occur is that the gamma line should be sufficiently
narrow, b, v/v « 1, and the characteristic energy of the
recoil electrons should be larger than the thermal electron
energy. This requires h v ) QE&m, c2 .

The amplitude of unstable plasma waves increases, and
this leads to development of turbulence in the plasma. The
problem of relaxation of the turbulence will be considered
later. The basic picture should be the same as in the
case of beam instability [6—9]. In our case it could be
important that the recoil electrons occupy a large region in
the momentum space and they initiate instability at small
(k —k, = to~i/ck) and high (k —co/3vr) wave numbers.

Because of nonlinear interactions, turbulence of trans-
verse plasma waves appears [6]. This process can be re-
sponsible for creating a radio emission in a plasma. When
the scale of the plasma object is smaller than I/p„where
p, —to~~/n, vrc is the coefficient of collisional absorp-
tion [6], radio waves leave the object and can be ob-
served. The corresponding value of the maximum scale
is R,„—(2 X 10'4 cm) (n, /I cm 3) '(ktiT, /I eV)3t .
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CAMK in Warsaw for hospitality and A. F. Illarionov for
fruitful discussions.

Appendix. —To determine the integration limits in
Eq. (18) for given k, O, let us find the range of u acces-
sible for recoil electrons. By definition, u = v sinO +
v, cosO (electron velocity tj is in units of c). A recoil
electron with energy E gained by scattering of a photon
with energy e has velocity components parallel and
perpendicular to the g axis

E
v, =, v~ = $2av, —(a + 1)v, , (Al)

a(E + I)'
where a = e/(e + 1). Recoil electrons with fixed e and
E have u in the range

ui(e, E) ~ u ~ u2(e, E),
where

tti 2(e, E) = ui (e, E) sinO + v, (e, E) cosO. (A3)
When E is changing in the range 0 ~ E ( E „, v,
is changing monotonically in the range 0 & Ij, &
v, ,„(e) = 2a/(I + a ). Considering ui 2 as a function
of e, E, we find that u~ attains its minimum at v, = v, ~

and u2 attains its maximum at v, = v, 2, where

I + a v'I + a2 sin O
(A4)

The allowed minimal and maximal values of u for given
a are

u;„,„(e) =
2 (cosO ~ Ql + a2 sin O). (A5)

1 + a

Now we can find the domain on the (a, E) plane covered
by the resonant electrons. Let us note that u;„(e) ( 0
while u, „(e) ) 0. The resonant value u = uo is positive;
therefore the condition ttp ~ tt;„(e) is always satisfied.
The essential constraint on a comes from the condition
uo ~ u, „(e). u, „(e) is monotonically growing and
therefore this condition requires that e ~ e&, where e~ is
uniquely determined by the equation u, „(e~) = un.

The allowed range of E is determined by the double
inequality

u((e, E) ~ up ~ u2(e, E), (A6)

where e is now considered as a parameter. This inequality
is not satisfied for E = E „(e) unless uo equals exactly
v, „cosO. However, some intermediate values of E (
E,„have to meet (A6), since the condition e ) e ~

guarantees the existence of recoil electrons in resonance
with a given plasma wave.

Taking into account Eq. (A3) we write the double
inequality (A6) in the equivalent form

v~(E) sin O ~ [uo —v, (E) cosO] . (A7)

This condition coincides with the condition that the right
hand side of Eq. (15) is positive and it can be rewritten as

where

p sin O = A(E2 —E) (E —E~) ) 0, (A8)

A = —sin O—2up cosO 1+ —+up~0,
a a

(A10)
up cosO8=sin O+

0
up.2
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The condition e ~ a~ guarantees that E~ 2 exist and 0 (
Ei & E2 (E,„. The resonant recoil electrons produced
by photons with given e have energies in the range
Ei(e) & E & E2(e).
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