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Analysis of Beam-Beam Interactions with a Large Crossing Angle
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The beam-beam interaction for a flat beam with a large horizontal crossing angle is studied for the
case in which the vertical betatron function at the interaction point is comparable to the bunch length.
It is shown that crossing with a large angle has less serious detrimental effects than is usually believed.
A large crossing angle might have several merits for future high-luminosity colliding rings.

PACS numbers: 41.85.—p, 29.27.Bd, 41.75.Ht

Nowadays, high-luminosity e+ e colliding rings are
being considered seriously. Small bunch spacing is useful
because collisions occur more frequently. This causes the
problem of parasitic collisions: Bunches may interact
with each other not only at the interaction point (IP)
but also at points around the IP. These can be avoided
by collision with a crossing angle. This, however, leads
to another difficulty. The collision with a crossing
angle causes an instability due to the synchrobetatron
(SB) resonances which are known to have limited the
performance of the DORIS collider [1]. It is widely
believed that SB resonances become more serious for
larger crossing angles [2].

The vertical betatron function at the IP (P ) considered
in recent designs is much smaller than traditional ones
and is comparable to the bunch length a-, . The analysis
of the head-on collision for this case [3] has shown that
the SB resonances are weakened by the bunch-length
effect. This can easily be tested in simulation in which
a bunch is split into several longitudinal slices. In this
Letter, we study the bunch-length effects in the collision
with a crossing angle [4]. We develop a new method
of calculation. One ingredient is the mapping, called
synchrobeam mapping (SBM), which is symplectic in a
six-dimensional sense but is formulated only for the head-
on collision [5]. The other is a Lorentz transformation
that transforms the collision with an angle to a head-
on collision [6] between bunches tilted horizontally (see
Fig. 1). Thanks to the six-dimensional nature of the SBM,
it is relatively easy.

Model. —We assume one IP in a ring located at s = 0,
where s is the azimuthal coordinate. At the IP, coordinates
of a particle are boosted so that the collision becomes head-
on (2 ). then the particle interacts with the other beam in
this boosted frame in which the SBM is used. The particle
is then transformed back to the original frame (5 '). lt
is transformed from IP to IP by betatron and synchrotron
oscillations with radiation damping and excitation (A.).
We denote the variables of each step as follows:

g —1

x(0) x'(0*): x* (0*) -. x'(0) x(0) .

We always transform quantities at s = 0 to those defined
at s = 0.

We employ the coordinate system x = (x, p„y, pY, z,
p„h, s) called the accelerator coordinate. Here x and

y are horizontal and vertical coordinates, respectively,
and their conjugate momenta are defined as (p„pY) =
my(dx/ds, dy/ds)/Pp, where Pp is the absolute value of
the three-momentum P of the reference particle, m is the
mass of the electron, and y is the relativistic Lorentz factor.
We use z = s —ct(s), where c is the light velocity, t the
arrival time at the position s, and p, = (~P~ —Pp)/Pp.
The h is the "Hamiltonian:" We use

This is the momentum along the reference trajectory, and
s is the "time, "which is the position in the ring. Here we
take the ultrarelativistic limit.

Lorentz Boost X.—We perform a Lorentz transforma-
tion for the Cartesian coordinate: X = (X, I', Z, Px, Py, Pz,
H, T), which is defined for the laboratory frame. Here H
is the true Hamiltonian, which is the energy, and T is the
time. The relations between the accelerator coordinates are

Boost

(b) X*

)&

z*

FIG. 1. Beams colliding at an angle in the original frame (a)
and in the boosted frame (b). The coordinate frames are also
shown. The direction of the Lorentz boost 5 is indicated by a
dotted line.
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The Lorentz boost which makes the collision head-on is
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It consists of a rotation in the X-Z plane by an angle @ and
a boost to the direction of the rotated X (see Fig. 1). Here,
P is the half-horizontal crossing angle, and * indicates the
quantities in the boosted frame. The reference particle
Px = Py = 0 and H = cPo is transformed into Px =
Pr = 0 and H*/c = Po = cos@Po.

The x(0) is transformed to x*(s*) by

(z*(~*)) (z(0) 1x*(s'), x(0)

( y*(~*)) ky(0) )

(1/cosP
tang

0

0 0 0) (z(0) )
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0 0 1) (y(0) )

and
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0 p
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1/ cosP ) (p~ )
A world point with s = 0 is not necessarily transformed
to s* = 0. We need a transformation from x(0) to x*(0");
we thus perform the additional transformation

w,*(0*) = w,*(s*) — ' s' = w,*(s*) + h,
* sin@x(0).

Here w; stands for (x, y, z), h,
* = Bh*/Bp,*, and h* =

h(p,*,p*, p*). From Eq. (1), it is easy to show that

1
(p» py P, '

P11) =
2 h(P» Py~ Pz ~ o)

= h(p.*,p,
*

p,
*

Po)
We have thus obtained 5:

x* = tanPz + [1 + h* sing]x,
y* = y + sinPh*x,

z' = z/cosP + h,*sin@x,

p" = (p, —tan@h)/cosP,

py
= pY/ cos@,

p,
* = p, —tan@p + tan Qh.

This map is quasisymplectic; the Jacobian of the trans-
formation is 1/cos3@. This is not a problem because the
inverse factor cos3$ is appliedby X ' afterward. Within
the ultrarelativistic approximation, the 5 is exact.

Beam beam force: SB-M—The strong beam is cut into
slices; each slice is represented by its z*(0*) coordinate,

denoted by zt. (We use f to indicate quantities of the
strong beam. ) At s* = 0, we have o.t = cr, /cosP. The
first and second moments of the particle distribution at
the locations of the slices are (only terms linear with
respect to dynamical variables in L are taken)

Xt singzt, I't = 0, Pt —0 Pt —0

~11 ~11 ~ ~22 ~22/ COS 2

233 233 and $44 = 144/ cos

The SBM is described in detail in Ref. [5]. It can be
represented by a Hamiltonian H = Hbb(x*)6(s*), where
Hbb is defined implicitly by

exp: Hbb. exp: F(x*,z ):——
zt

Here the Lie algebra notation [7] is used: F(x', z t)
describes the interaction of a particle in the weak beam
with a slice having zt. It is applied such that a particle
collides first with the slice with the largest zt and then
with the next largest and so on. Here

F(x*;zt) = n*U(X*, I'*;X„(S),X, (S)),

where n* is the number of particles in the slice, S = S(z*,
zt) = (z* —zt)/2 is the value of s* for the real collision,
X' = x* + p,*S —Xt(zt), and I" = y* + p*S —Yt(zt).
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We assume the transverse distribution of each slice is Gaussian so that the electromagnetic potential U is

exp[ —x'/(2X)i + u) —y'/(2133 + u)]
U x, y; du.

yo o $21]~ + ug2X33 + u

and

cosp, ~ yV "y ( —sinp, ,y/p,
p slnp~ y

o

cosp, z y j

cos~, —po sinp, ,
A2 sinp, ,/po A2 cosy, ,

~

~

Here r, is the classical electron radius, and yp is the y
associated with Pp. In a simulation, the longitudinal slices
are positioned in such a way that each slice represents
the same number of particles [5]. Note than in applying
the kick to a test particle, we should use Xt& and 133 att t

S(z", z ): X~~(S) = X~~(0) + 21~2(0)S + 222(0)S, etc.
Arc A. .—We use a simple mapping for the arc. A

coordinate x is transformed first by x ~ diag(V„&y, &,)x,
where

! of @ on o. 's [Figs. 3 and 4(a)] and amplitudes [Fig. 4(b)]
increase with @ at first but decrease for larger P. This
is quite contrary to what is expected from Piwinski's
formalism [2].

Discussion. —To understand this discrepancy, it seems
useful to consider the luminosity L and effective beam-
beam parameter sy in the boosted frame. Including the
hourglass [8] and the beam-tilt effects, but excluding the
dynamical effects, we define

L 2
R = —= —ae" ICo(b),

Lp
2

Oy 0
a=, b = a I+ '. tang)

with A, y, = exp( —1/T y, ). Here the T's are the damping
times expressed in number of turns. Then we apply [5]

~ —+~+ cr 1 —A ri, p~~px+ G 1 —A~I"2,

+ Q 1 $ f3 ~ py ~ py + 0 1 Ay

dz'p(z')g1 + (s/P,')'

x fy(zt tang, o-,"(S),o-,*(S)), (3)

p&~pz + c7 1 A t5,
where the r"'s are Gaussian random numbers with (r) = 0
and (r2) = 1, representing the radiation excitations.

Simulation. —We performed a weak-strong simulation
using the set of parameters listed in Table I. We tracked
50 particles for 10000 turns and accumulated data for
beam sizes and the largest particle amplitudes. For the
present parameters, the case with five slices gave results
almost identical with those using more slices.

For the value q y
= 0.01 of the nominal beam-beam

parameter, the beam sizes are shown in Fig. 2. For P =
0, the peaks indicate the resonances (from left to right)
n(v, —rj, /2) + m(vy —

eely/2) + I v, = integer for (n, m, I) =
(0, 2, —1), (0,2, —2), (2,—2, —1), (2,—2,0), (0,4,0), (2,2,0),
(2,2, —1), (0,2,2), (0,2, 1), and (0,2,0). Here v y, are the
tunes. For p = 5 mrad, the major difference is that (1,2,0)
and (1,—2,0) appear. The latter two resonances are not
SB resonances and are stronger for larger @. These are
induced by the nonlinear terms in J' and J'

Letting g y
= 0 ~ 05 we compare results for several

values of @ (see Figs. 3 and 4). It appears that the effects

TABLE I. Standard parameters.

where Lp is the luminosity without hourglass reduction or
tilt effect, p is the longitudinal distribution function of the
strong beam, Ko is a Bessel function, and f, (x, o.„o.y) is
Montague's reduction factor [9] of sy for an off-center
particle, which falls quite rapidly with @. These are
shown in Fig. 4(c). For small P, R~ is larger than 1

due to the hourglass effect which makes the beam-beam
interaction more serious. This decreases rapidly for larger

At the same time, RL also decreases but less rapidly.
The essential difference from Piwinski's formalism [1]

is the inclusion of the bunch-length effects by using
several slices. In fact, if we use only one slice, the effect
grows almost proportionally to @ and does not decrease.
From Eqs. (2) and (3), it seems that two parameters
are important: R = rr, /p and 4 = @o., /o. „(Piwinski
angle). For R ~ 1, the hourglass effect is important even
for P = 0 [3]. When 4 ~ 1, the tilt effect is important.

e 0
4

Emittances
Betatron functions at IP
Bunch length
Relative energy spread
Tunes
Damping times

(E, E )
(P.', P,')

CTz

O~

(v„v, )
(T„,Ty, T, )

(2 x 10 ', 2 x 10 ") rn

(1,0.01) m
0.01 m

10 3

(0.2, 0.08)
(2000, 2000, 1000) turns

0
0

I

0.2
Vy

I

0.4 0.5

FIG. 2. oy/o. o (solid) and o;/o. o (dotted) vs v, , for (a) P =
0 mrad and (b) p = 5 mrad, with yl = 0.01.
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FIG. 3. a, /o. P(solid) and o, /pro (do. tted) vs v, for (a) P =
0 mrad, (b) P = 5 mrad, and (c) @ = 20 mrad, with q = 0.05.
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FIG. 4. The P dependence of (a) a;/rrP (solid) and o,/rrP.
(dotted), (b) A„(solid) and AY (dotted), the horizontal and
vertical maximum amplitudes being normalized to crP „and
(c) the luminosity reduction factor Ri (solid), the g re uction
factor Re for z = 0 particle (dashed), and the same for z = o.,
particle (dotted). Vertical tune vY is 0.15. For the present set
of parameters, qb

= 10 mrad corresponds to 4 = 0.707.

Piwinski's formalism worked well for DORIS where R «
1 and 4 = 0.5 (DORIS used vertical crossing, so cr, is
replaced by o.

~ in 4). In Pinwinski s formalism, Rt and
RL decrease in the same manner, because cr is simply
replaced by an effective value of cr, [1].

From simulation results shown above, and from results
with several other sets of parameters, it seems that o.'s and
the maximum amplitudes become largest at around 4 = 2,
and they become almost nominal values for 4 ~ 1.

A large P (4 ~ I) might have several merits for high
luminosity rings. (I) Luminosity reduction is only of

geometrical origin: Compared to P = 0, RL is small,
but R~ is even smaller, so that the beam blowup is less
serious. Since L is proportional to I/(o, tr. ,), it has a
second maximum at 4 —1. In the example used in
Fig. 3, as a function of @, L(0)/Lp = 86%, L(0.5)/Lp =
31%, and L(1.13)/Lp = 50%. (For shorter bunches, this
merit becomes less remarkable but still exists. For
cr, = pp/2 with the other parameters unchanged, for
example, the maximum occurs at around 4 = 1.4 and
L/Lp = 56%.) (2) If we also use the crab crossing [10],
the geometrical reduction of the luminosity might be
recovered. Even without it, the loss of the luminosity
relative to @ = 0 is less than one half. (3) The beam
separation around the IP is easier. (4) The good region in
the tune plane is much wider (see Fig. 3).

The rate of falloff of the beam size with @ depends
a little on the tunes. At some resonances, in particular,
the beam sizes remain large. These points can be avoided
easily.
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