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Numerical simulation of the Navier-Stokes equation in a continuously vibrated box demonstrates
the formation of convection rolls. These rolls circulate with the opposite orientation to those found

in granular flows.

By introducing a negative-slip boundary condition, we recover the roll orientation

and roll reversal with increasing side wall angle that have been obtained in experiments on granular

convection.

PACS numbers: 46.10.+z, 05.40.4j

When a rigid vessel containing a granular material,
such as glass beads or sand, undergoes vertical shaking
that is periodic in time, steady convection rolls emerge.
These rolls may be readily observed in a box with one
very short side (~3-20 particle diameters) perpendicular
to the driving, so that the particle motion is essentially
two dimensional, in a plane with sides many tens to
hundreds of particle diameters. Experiments on this
system described by Knight, Jaeger, and Nagel exhibit
a rich behavior, depending not only upon the frequency
and amplitude of the driving but also on the shape of the
container [1].

For a rectangular container, two rolls are observed,
each of a characteristic length of order the box size.
They are roughly symmetric about the vertical bisecting
the box. In a layer adjacent to its respective exterior
side wall, each roll carries the grains downward. Away
from the side wall, the material flows, on average, upward
toward the surface of the bed. When the container has
a circular shape in the direction parallel to the driving,
the granular flow is inverted: The grains climb the
vessel walls and circulate downward in the interior. The
orientation of the rolls in a trapezoidal container, wherein
the angle of the side wall with respect to the vertical may
be readily adjusted, has also been examined, with some
attention to how the direction of circulation changes as a
function of driving and side wall angle [2].

A number of theoretical proposals have been made for
the origin of convection in this kind of system [3-5].
Some recent arguments have relied on particle dynam-
ics simulation, typically in two dimensions, which fol-
lows the time-averaged motion of a large number of disks
with elastic and frictional interactions [6]. These simula-
tions have yielded, for some parameter values, flows re-
sembling those found experimentally in the rectangular
container. On the basis of these simulations, qualitative
explanations of the phenomenon have been put forward.
These explanations are largely descriptive in character,
and, consequently, we find their merits difficult to evalu-
ate. In particular, net particle displacement over a pe-
riod often involves the relatively small residual of large

2216 0031-9007/95/74(12) /2216(4)$06.00

vertical oscillations. It is not evident to us that these ar-
guments are sufficient to reveal the sign of the residual.

Somewhat earlier, Savage adopted a complementary
approach to the problem, with the aim of constructing
continuum model for granular convection [7]. In the
situation he examined, the flow is driven by the container
bottom, which undergoes periodic and sinusoidal spatial
deformation. He suggests that the underlying mechanism
of convection is an analog of ‘“acoustic streaming.”
In his picture, acoustic waves propagating through the
bed catalyze the circulation; the bed is modeled as a
compressible fluid. The boundaries of the container play
no apparent role within his model (although it is not
obvious that the geometry of his experiment justifies their
neglect), nor is any elastic contribution manifest.

In this paper, we model granular flow by the Navier-
Stokes equation, supplemented by a boundary condition
that may restore the physics of granular flow essential
to roll formation and orientation. Our model shares
certain features with each of the mechanisms we discussed
above, but also differs from them in crucial ways. The
importance of the frictional interaction with the vessel
walls suggests that we cannot ignore them, as Savage
does in his work. On the other hand, we believe that
the apparent fluidity of the convecting granular phase
suggests that a continuum description is natural, and, like
Savage, we find that streaming underlies the observed
dynamics.

Our strategy involves a numerical examination of
the behavior of a simple Newtonian fluid, subject to
boundary conditions appropriate for the experimental
geometry [2]. Whereas it has been claimed [5] that
convection in a vibrating container is a phenomenon
peculiar to granular materials, we find that a Navier-
Stokes fluid yields convective behavior [8] whose origin
is analogous to that in the granular system; however,
we find that the orientation of the rolls in the Navier-
Stokes fluid is not what is observed in the granular
convection experiments. It is only when we perform
the phenomenological introduction of a negative slip at
the vertical side walls that we recover the roll direction
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characteristic of the experiment—in particular, we obtain
roll reversal as a function of side wall angle.

We remark that the choice of appropriate boundary
conditions at vessel walls, and whether one should think
of the frictional coupling at the walls as removing, or
adding, energy or momentum to the bulk flow, have been
recurring issues in granular systems, and have not to our
knowledge been satisfactorily resolved [9,10].

It must be stressed that we do not expect the present
fluid model to apply to all, or even most, granular phases.
For example, we have nothing to say about “fluidization,”
rather we only address phenomena within the fluidized
phase. We also remind the reader that many material
properties of a static sandpile, such as sound speeds or
shear moduli, do not necessarily apply to sand vibrated
continuously at high frequencies.

In the absence of time-resolved information on convec-
tion driven at small amplitudes and large frequencies, our
physical intuition has been guided by observations of con-
vection in discretely “tapped” beds, in which a large and
sudden acceleration is applied to a quiescent bed, at in-
tervals spaced sufficiently to allow for the complete re-
laxation of the sandpile. Frozen video frames reveal the
sand distribution displayed schematically in Fig. 1; nei-
ther the profile of the driving cycle nor phase of the frame
is known. We observe that while the interior of the bed is
suspended, the side walls have retarded the displacement
of a parallel layer near the container bottom, on the order
of 10 particles in thickness. Before the rest of the bed de-
scends, the material in the retarded boundary layer relaxes
to its static angle of repose. A similar process occurs,
at a distinct part of the driving cycle, at the top of the
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FIG. 1. Schematic of frozen video frames from tapped granu-
lar beds, where the bed completely relaxes within a period of
the driving. Sand is in the shaded regions. The lower and
upper levels of the figure correspond to distinct (and unknown)
instants in the driving cycle. Side wall friction generates
density fluctuations that are relaxed by inertial transport
(arrows) before the bulk collapses, yielding net convective
motion.

bed. We infer that two mechanisms couple to generate
the global flow: (1) frictional attenuation at the side wall
causes a phase delay, between bulk and boundary, in the
local density fluctuations; (2) these density fluctuations
relax through inertial transport. Our model for continu-
ous driving, when the bed has insufficient time to relax
in one cycle, will incorporate these density fluctuations as
acoustic waves propagating through the bed. Our work
addresses the continuum form of boundary-modulated at-
tenuation that might yield the experimentally observed
roll pattern, in a bed otherwise modeled as a simple New-
tonian fluid.

We made a number of simplifications to obtain a
tractable model. In a variety of regimes, particularly
at high frequencies (=30 Hz) and small amplitudes (at
most a few particle diameters), experiments suggest very
small density fluctuations within the granular bed, on the
order of at most a few percent [11]. The upper interface
of the granular bed appears to be quite well defined
in a variety of experimental regimes, with the density
decaying from approximately the bulk value to zero over
a distance of less than a particle diameter. We eliminate
the interface entirely from our model, since we anticipate
that the importance of the interface in determining the
bulk roll orientation is minor. We remove the interface
by reflecting the container around a horizontal axis,
and filling the entire cavity with fluid. The presence
of density fluctuations, whether generated near the bed
surface, or by cavitation in the interior, is subsumed in the
compressibility of our fluid model.

In the calculations we discuss here, we set g, the
gravitational acceleration, to zero. We confirmed that
finite g does not alter the morphology and orientation of
the rolls appreciably, even if we choose an equation of
state such that most of the fluid remains in the bottom
half of the vessel. Gravity might be expected to induce a
critical driving below which the net circulation vanishes;
in its absence we find no such threshold [12].

For our shaking frequencies and amplitudes, the density
fluctuations turn out to be small; we use a linear equation
of state p(p) = po + ¢?p, where p,p are, respectively,
pressure and density, and we set the mean density to
unity. While V - u (u the fluid velocity) may acquire
finite values in our simulation, we anticipate that stratified
or Boussinesq (V - u = 0) flow will share the qualitative
features discussed below. We assume constant uniform
temperature and no independent dynamics for energy
transport and dissipation; our model does not incorporate
any granular temperature [13].

The calculations are carried out entirely in the (moving)
frame of the vessel. The reason for transforming to the
moving frame is that the boundary conditions, which
apply to the velocity of the fluid relative to that of the
walls, are most readily implemented in that frame. Since
the vessel is rigid, the box velocity is independent of
position. One readily finds that in the moving frame,
the convective derivative of velocity in the y direction
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gives rise to an effective body force that appears on the
right-hand side of our equation. The Navier-Stokes
equations [14] may then be written as follows:

3
a—’:+v-(pu)=0, 1)

0 R
p a—‘: + pu - Vu + Vp + vV?u = 47%pTysinQnr),
(@)

where we have scaled length by box side, and time by
the period of the driving @ ~!. T denotes the amplitude
of driving; § is the upward pointing unit vector. The

boundary conditions at the walls are

u, =0, 3)
w + o~ 4)
on

un,u, denote, respectively, the components of u normal
(directed outward) and tangential to the wall; o is the
slip. When o is positive, the tangential component of
the velocity crosses zero outside the boundary; negative o
corresponds to a zero crossing internal to the fluid. The
vessel was taken to be a trapezoid of approximately unit
aspect ratio, reflected about its upper horizontal boundary,
with angular deviation a of the side walls outward from
vertical with respect to the top and bottom.

We employed two distinct explicit algorithms to solve
these equations in their conservation form. For rectangu-
lar boundaries, we used a two-step Mac-Cormack algo-
rithm, second order in space and time [15]. In addition,
we studied the equations with a second-order centered-
difference scheme, first order in time. For finite angles,
we used exclusively the latter method. The trapezoidal
coordinates were mapped onto a rectangular grid, upon
which a uniform discretization was carried out. The
boundary conditions at the walls were enforced implic-
itly, to second order in grid spacing.

Our parameters were restricted to the domain of va-
lidity obtained by linear stability analysis in the absence
of boundaries [15]. We established that our results con-
verged as the square of the grid spacing, and as the first
power of the time step. Our smallest grid spacing was
%~ Reasonable initial conditions do not affect the peri-
odic steady state achieved by the flow after many cycles;
parameters may be varied by an order of magnitude with
the same qualitative results.

Figure 2 depicts temporal averages of pu over a full
period; initial transients have been discarded. We have
shown only the lower half of the container, the remainder
obtainable by symmetry. The negative slip boundary
condition applies. Three features of the experiments are
conspicuous in this figure: (1) A roll emerges at small
a =0, in which fluid descends at the side boundary;
(2) the fluid velocity has a local maximum at the boundary,
for a near 0; (3) for large enough «, the roll orientation
reverses. Note the route taken by the transition from one
roll orientation to the other: A new steady roll grows
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FIG. 2. Steady-state velocity profiles, averaged over one
period of the driving, of a simulation of a vertically shaken
box. The gravitational acceleration g has been set to 0.
The driving is sinusoidal with unit frequency and amplitude
I' = 0.01. The fluid obeys a linear equation of state with sound
speed ¢ = (dp/dp)'/? = 1, where p and p denote, respectively,
pressure and density. The viscosity » is set to 0.05; the slip
o is equal to —0.9. The largest arrow length is scaled to the
maximum (averaged) velocity v,. The vertical deviation of
the side walls « is the only parameter that varies among the
three simulations: (a) @ = 0°, v,, = 2.4 X 107%; (b) a = 8°,
v, = 11X 107% (c) a = 16°, v,, = 3.5 X 1074

from the interior of the vessel, eventually taking over for
sufficiently large «. Other possibilities exist a priori; the
new roll might grow from the outside, or the net motion
of fluid might cease in the crossover regime. Experiments
to examine how the roll reversal actually occurs are un-
der way.

The critical angle for roll reversal depends monotoni-
cally on the slipping length o. For the no-slip condition
applicable to most fluids, o = 0, flow is downward at the
side walls, independent of angle. With positive o, we do
not observe roll reversal for « = 0. As o — 07, the flow
is upward at the side walls; the critical o decreases in in-
verse proportion to o (data not shown).

Emphasizing that we make no claim to explain it, much
less suggest a microscopic derivation, we conclude with
a discussion of our negative slip condition. A variety
of granular flows display a high mobility layer, a few
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particles in thickness, localized in the vicinity of a bound-
ary [16]. Simulations of dilute continuously sheared
granular flows have shown that density gradients can arise
near a wall [9]. When the inelasticity of the particle-wall
interaction exceeds that of the interparticle interaction, a
parallel layer of increased particle density arises directly
adjacent to the boundary. Such density gradients also oc-
cur in simulations with transversely oscillating side walls;
indeed, particle simulation reveals that changing solely the
dissipative interaction of particle with wall can cause roll
reversal [3,17]. It seems natural to expect that a contin-
uum description of granular flow would require a special
correction to the viscous fluid equations, at the boundary.
Negative “apparent slip” velocities have been proposed
for the continuum description of certain polymeric shear
flows, where (material) phase separation occurs near the
boundary, resulting in the storage and delayed release of
elastic energy [18].

A common feature of particle simulation [17], the
present fluid computations, and experiment [2] is wave
propagation through the granular bed. Net transverse mo-
tion appears to be localized in the neighborhood of these
excitations. This behavior is characteristic of acoustic
streaming, a phenomenon known to Rayleigh [19]. By
that mechanism, spatial inhomogeneity in wave ampli-
tude leads to net flow at second order in the vibration
amplitude. Savage [7] proposed that streaming modu-
lates granular flow excited by a bottom plate undergoing
spatial deformations. He claims that any effect of the
vertical boundaries of his container may be ignored;
consequently, he does not obtain the anti-Newtonain toll
orientation we derive here [20]. In our case, wave atten-
uation through interaction with the side walls plays an es-
sential role in determining the orientation of the net flow.

In summary, our calculations suggest that convection
in a vertically oscillating box should be observed for a
Navier-Stokes fluid, as well as for granular materials.
The orientation of the rolls depends on the coupling of
the fluid to the walls, and, in particular, on the slip
condition at the boundary [21]. We expect that many of
our results can be reproduced within perturbation theory;
these calculations are in progress.
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