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m%X and Pseudoscalar Form Factors from Lattice QCD
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The 7rNN form factor g &~(q') is obtained from a quenched lattice QCD calculation of the
pseudoscalar form factor gp(q2) of the proton with pion pole dominance. We find that g ~~(q') is
well fitted with a monopole form which agrees with the Goldberger-Treiman relation. The monopole
mass is determined to be 0.75 ~ 0.14 GeV, which shows that g &z(q~) is rather soft. The extrapolated
~N coupling constant g &~ = 12.7 ~ 2.4 is quite consistent with the phenomenological values. We
also compare g»(q2) with the axial form factor gz(q ) to check pion dominance in the induced
pseudoscalar form factor hz(q2) vis-h-vis the chiral Ward identity.

PACS numbers: 12.38.Gc, 13.75.Gx, 14.20.Dh

The 7rNN form factor g zz(q ) is a fundamental quan-

tity in low-energy pion-nucleon and nucleon-nucleon dy-
namics. Many dynamical issues, such as ~N elastic and
inelastic scattering, NN potential, three-body force (triton
and He binding energies), pion photoproduction, and elec-
troproduction, depend on it. Similarly, the pseudoscalar
form factor is important in testing low-energy theorems,
the chiral Ward identity, and the understanding of the ex-
plicit breaking of chiral symmetry. Yet, compared with the
electromagnetic form factors and the isovector axial form
factor of the nucleon, the pseudoscalar form factor gp(q2)
and the ~NN form factor g zz(q ) are poorly know ex-
perimentally and theoretically.

Notwithstanding decades of interest and numerous
works, the shape and slope of g z~(q ) remain illu-
sive and unsettled. Upon parametrizing g ~~(q ) in the
monopole form

2 2
2 7TNN

g NN(q ) g ivN A2 (1)~ NN
—q'

with g ~~ —= g ~~(m„), the uncertainty in the parame-
trized monopole mass A NN can be as large as a factor of
2 or 3. For the sake of having a sufficiently strong tensor
force to reproduce the asymptotic 0-to-5-wave ratio and
the quadrupole moment in the deuteron, A» is shown
to be greater than 1 GeV [1]. Consequently, A ~~ in the
realistic NN potentials are typically fitted with large A»
(e.g. , A ~~ ranges from 1.3 GeV [2] to 2.3—2.5 GeV
[3]). On the other hand, arguments based on resolving the
discrepancy of the Goldberger-Treiman relation [4] and
the discrepancy between the pp~ and pn, ~+ couplings
[5] suggest a much softer g zz(q ) with A z~ around
0.8 GeV. Furthermore, hadronic models of baryons with
meson clouds, such as the Skyrmion model, typically have
a rather soft form factor (i.e. , A ~~ —0.6 GeV) [6] due
to the large pion cloud, and such a small A„NN is needed
for high-energy elastic pp scattering [7].

In view of the large uncertainty in g ~~(q ), it is
high time to study it in a lattice QCD calculation.

Since our recent calculations of the nucleon axial and
electromagnetic form factors are within 10% of the
experimental results [8,9], a prediction of g~z~(q ) with
a similar accuracy should be enough to adjudicate on the
controversy over the ~%N form factor. In this Letter, we
extend our lattice calculation to the proton pseudoscalar
form factor for a range of relatively light quark masses
(around the strange quark mass). g zz(q ) is obtained by
considering the pion pole dominance in gp(q ) when the
latter is extrapolated to the quark mass which corresponds
to the physical pion mass.

In analogy to the study of the electromagnetic and
axial form factors [8,9] of the nucleon, we calculate the
following two- and three-point functions for the proton:

G„„(t,p) = g e '"'(0IT(g (x)g (0))10), (2)

Gppp(tf, p, t, q) = g e
Xf,X

&& (0IT(X (xf)P(xUP(o))Io&, (3)

where ~ is the proton interpolating field and P(x) is the
mean-field improved isovector pseudoscalar current for
the Wilson fermion

m a-
P(x) = e &'P(x)i 7 s

—P(x) .
S~, '2

Here, we have included the 2'/8a. , (~, = 0.1568 is
the critical ~ value for the chiral limit for our lattice
at P = 6.0) and the e " [m~a = In(4~, /~ —3) is the
quark mass] factors in the definition of the lattice current
operator. These factors take into account the mean-
field improvement and finite quark mass correction for
the Wilson action [10], and have been shown to be an
important improvement in the evaluation of the axial
form factor in order to allow the perturbative lattice
renormalization to work [8].
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Phenomenologically, the pseudoscalar current matrix
element is written as

(p~lp(0)IS '~'& = gp(q')a(p, ~)IVs~(S ', ~'), (5)

where gp(q2) is the pseudoscalar form factor. It has
been shown [8,9] that when tf —t and t » a, the lattice
spacing, the combined ratios of three-point and two-point
functions with different momentum transfers, lead to the
desired form factors related to the probing currents. In
the case of the pseudoscalar current in Eq. (4), the lattice
pseudoscalar form factor gp(q2) is given by the following
ratio:

I p Gpp& (rf, 0, r, q) G&& (r, 0) q3

G~~(rf ()) G„„(t,q) E~ + m
gp(q'), (6)

where I = &3&5(1 + p4)/2 and I and E~ are the proton
mass and energy with momentum q, respectively.

Quark propagators have been generated on 24 quenched
gauge configurations on a 16 X 24 lattice at p = 6.0
to study the nucleon electromagnetic and axial form
factors [8,9]. We shall use the same propagators for
the present calculation. Results are obtained for three
relatively light quarks with ~ = 0.154, 0.152, and 0.148.
They correspond to quark masses m~ of about 120,
200, and 370 MeV, respectively. [The scale a
1.74(10) GeV is set by fixing the nucleon mass to its
physical value. ] Results of g~(q2) for the momentum
transfers q2a2 = n(27r/L) (where n = 1 —4, and L is the
spatial extent of the lattice) are obtained from the plateaus
of the ratio in Eq. (6) as a function of t, the time slice of
the current insertion, away from the sink and source of the
nucleon interpolation fields [8]. Since the ratio in Eq. (6)
is proportional to q3, gp(q ) at q2 = 0 cannot be obtained
directly. Rather, it will be obtained from extrapolation
from the finite q data as explained later.

Plotted in Fig. 1 are the lattice isovector pseudoscalar
form factors gp(q ) of the proton as a function of m~a,
the quark mass in dimensionless unit, which takes into ac-

G
P ~ P 0 P

—m t (8)

The lattice pseudoscalar form factor gp(q2) is related to
its continuum counterpart via gp(q ) = Zpgp(q ), where
Zp is the lattice renormalization (calculated to be 0.839 in

the tadpole-improved perturbation theory at p = 6.0 [10])
for the pseudoscalar current. Since Zp is associated with

G, not g aviv(q ), we will not discuss it any further.
Plotted in Fig. 2 is g aviv(q ) defined via Eqs. (7) and

(8). There is a caveat to extracting g ziv(q ) this way
which we wish to point out. Strictly speaking Eq. (7) is
equivalent to PCAC (partial conservation of axial-vector
current) where the physical pion field dominates and is
thus valid for small q . For q as large. as m with m'

being the radially excited pion at 1.3 GeV, higher mass
contribution to gp(q2) may not be negligible. However,
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count the tadpole-improved definition for the quark mass
[10]. They include different momentum transfers with q2

from 1 to 4 times (2'/La)2 [q~ = (E~ —m~) —
q for

the four-momentum transfer squared]. The errors are ob-
tained through the jackknife in this case. The extrapo-
lation of gp to the quark mass m~a which corresponds
to the physical pion mass is carried out with the corre-
lated fit to a linear dependence on the quark mass mqa for
K = 0.154, 0.152, and 0.148. The data covariance matrix
is calculated with the single elimination jackknife error
for gp [8,11]. This fitting gives g2/NoF = 0.005, 0.008,
0.65, and 1.7 for q a2 from 1 to 4 (2m. /L)2.

To extract the ~NN form factor g iv&(q ), we take the
pion pole dominance in the dispersion relation for gp(q )
so that

2
L( 2) m gm IVN(q ) (7)

Pl

where G = (O~P(0)~vr) can be obtained from the two-
point function
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FIG. 1. The lattice isovector pseudoscalar form factors at
various —q2 as obtained from Eqs. (6) are plotted as a function
of m~a, the quark mass in lattice unit, for the three relatively
light quark cases (Wilson Ir = 0.148, 0.152, and 0.154). The
top curve is for q' = (2'/La)~, the rest are for q2 from 2 to 4
times of (2m/La)' in descending order.
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FIG. 2. g»(q') at the quark mass which corresponds to the
physical pion mass. The solid and the dashed curves represent
the monopole and dipole fits with the respective monopole and
dipole mass A. They give somewhat different extrapolations at
q =0.
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g» is expected to be an order of magnitude smaller
than g» due to the fact that a node in the internal

qq wave function of m' will lead to cancellation in the
vertex function. Therefore, we estimate that the pion
pole dominance [Eq. (7)] may have an error as large as
5%—10% at the highest q we calculated. This is much
smaller than the statistical error we have at the highest q .
This is also consistent with the estimate that PCAC and
chiral perturbation are good to a scale of 4' f Keep. ing
this in mind, we discuss the behavior of g zz(q ). We
fitted it with both a monopole form [i.e., Eq. (1)] and
a dipole form. We found that the monopole form with
A &A

——0.75 ~ 0.14 GeV and a y /NL)F 0.13/2 ts
only slightly better than the dipole form with a dipole
mass of 1.32 ~ 0.17 GeV and a g /NoF = 0.57/2, in so
far as the y~ is concerned. However, at this point we can
inject our knowledge at q = 0, where the Goldberger-
Treiman (GT) relation relates coupling constants

m~g. (0) = f g NN(0) (9)
Using g~(0) = 1.20 +. 0.11 [8] and f = 89.8 ~ 4.5 MeV
calculated from the two-point functions (g; A4(t, x) X
P(0, 0)) and Eq. (8) using the point-split axial current,
g Jvz(0) is predicted to be 12.7 ~ 1.3 from the above GT
relation. This agrees well with g zz(0) = 12.66 ~ 0.04
from the experimentally known gz(0) = 1.2573 ~ 0.0028
and f = 93.15 ~ 0.11 MeV [12]. On the other hand,
the extrapolation of the monopole (dipole) fit of g~~~(q )
yields g zz(0) = 12.2 ~ 2.3 (10.8 ~ 1.3). Comparing
with 12.7 ~ 1.3 from the GT relation, we see that the
dipole form is less favored than the monopole form;
however, it cannot be ruled out in our present study
with limited statistics. It is interesting to note that the
monopole mass A» = 0.75 ~ 0.14 GeV thus obtained
is quite a bit smaller than those typically used in the
NN potential, .but agrees well with those based on
the consideration of the GT relation [4], the apparent
discrepancy between g o„„and g +„„[5],and nucleon
models such as the Skyrmion model [6]. To salvage
the nice fit of the NN scattering data and the deuteron
properties based on a hard ~NN form factor, attempts
have been made to incorporate a soft g„zz(q ) either
by appending a heavy pion at -1.2 GeV [13] or by
including multimeson exchanges [14] (e.g. , 7rp and 7ro).
Extrapolating g~~~(q ) to q = m, we obtain g~~~, the
~N coupling constant, to be 12.7 ~ 2.4. This compares
favorably with the empirical value of 13.40 ~ 0.17 [15]
and 13.13 ~ 0.07 [16]. The 4% change in g &~(q ) from
q = 0 to I indeed can account for the 4% discrepancy
in the GT relation when the physical g» is used in
Eq. (9) instead of the g~zz(0) [4].

Putting the chiral Ward identity 8~A„=
2m+i y5r, /2% with pion pole dominance or equiva-
lently PCAC (A~A' = f m2 P') between nucleon states,
we find
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FIG. 3. Comparison of gq(q ) and g ~~(q ) (both normalized
to 1 at q2 = 0) as a function of —q~ for the four quark cases
(a = 0.148, 01.52, 0.154, and 0.1567).

In addition to PCAC, if one further assumes that the in-
duced pseudoscalar form factor hz(q ) is dominated by the
pion pole, i.e. , hz(q ) = 2f g~z~(q )/(m —

q ), then

g ~~(q ) = (m~/f )gq(q ) I.n other words, g ~~(q )
has the same q2 dependence as gz(q2) which has been
frequently used in the literature [17,18]. As there is no
a priori reason why g ~~(q ) should have the same falloff
as g~(q ) at all q, and, furthermore, chiral perturbation
calculation [19] at one loop suggests that they acquire dif-
ferent contributions, we compare g zz(q ) from Eq. (7)
and g~(q ) obtained on the same set of gauge configu-
rations [8] for the present quark cases. Both g &z(q )
and gA(q ), normalized at q = 0, are plotted in Fig. 3
for K = 0.148, 0.152, 0.154, and 0.1567. The last ~ cor-
responds to the physical pion mass. We find that in all
these relatively light quark cases, there is a tendency for
the normalized g zz(q ) to lie lower (higher) than the nor-
malized gz(q ) at lower (higher) —q2. This presumably
rejects the preferred monopole vs dipole fit for the

g ~~(q ) and g~(q ). Our data do not discern this well,
though. If this behavior is verified, it would imply that
the induced pseudoscalar form factor hz(q ) [not the pseu-
doscalar form factor gp(q2)] is not entirely dominated
by the pion for higher —

q as it is at very low —
q

((0.1 GeV, say).
Lastly, from the chiral Ward identity [Eq. (10)],we can

obtain the pseudoscalar form factor hz(q ) from gz(q ) [8]
and g~zz(q ). We plot hz(q ) in Fig. 4. Also plotted in
the inset are experimental data obtained from pion electro-
production [18]. It turns out that the momentum transfer
ranges of our lattice calculation and the available experi-
ment do not overlap. We cannot compare them directly.
However, if we use the monopole fit of g z~(q ) and the
dipole fit of g~(q ) [8], we find the extrapolation of hz(q2)
(solid line in Fig. 4) does agree with the experimental data
at small —q . We note the errors of the fit start to diverge
as —q2 ~ 0 due to the q singularity in Eq. (10). As a
result we are not able to extrapolate to —

q = 0.88m to
compare with the muon capture experiment.
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and between the pprro and pnrr+ couplings [5]. This
will have a large impact on the study of NN potential, the
three-body force, and other processes which involve the
mN coupling. For future studies, it is essential to improve
the calculation by expanding the volume in order to access
smaller —q2 and to study the systematic errors related to
the infinite volume as well as the continuum limits.
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Although we mentioned earlier that our calculations
of the electromagnetic and axial form factors are within
10% of the experimental values, the work on weak matrix
elements on similar lattice sizes and P has shown that the
systematic errors are about 30% or less [20]. As an effort
to estimate the size of the finite-lattice-spacing error, we
used the lattice boson propagator for the pion pole [21]and
the lattice version for the fermion kinetic factor in Eq. (6)
to extract g zz(q2). We found that the monopole mass is
increased by 7% and g z decreased by 3% in this case.

Keeping the caveat of the systematic errors in mind, the
main results we gleaned are the following:

(1) g ~Jv(q2) can be well described by a monopole
form which agrees with the Goldberger-Treiman relation.
The monopole mass A ~~ = 0.75 ~ 0.14 GeV is much
smaller than commonly used in the NN potential.

(2) g zjv = 12.7 ~ 2.4 agrees with the phenomeno-
logical values of 13.40 ~ 0.17 [15] and 13.13 ~ 0.07
[16]. It is also consistent with the lattice calculation of
14.8 ~ 6.0 with staggered fermions [22].

(3) The falloff of g Iv~(q ) is about the same as g~(q )
at very small —q2 (~0.3 GeV ), but is likely to fall
slower at higher —q2. This suggests that the induced
pseudoscalar form factor hz(q2) is not entirely dominated
by the pion pole at higher —q2. This point needs to be
verified further with higher statistics study.

(4) From the chiral Ward identity and PCAC, we obtain
hz(q2), which can be checked experimentally in the future.

To conclude, we have calculated the isovector pseu-
doscalar form factor of the nucleon in a lattice QCD cal-
culation for quark masses from about one to about two
times that of the strange quark. From these we extracted
g ~jv(q2) with the help of the pion pole dominance. The
soft g ~~ (q ) form factor agrees with the predictions based
on the discrepancy of the Goldberger-Treiman relation [4]

FIG. 4. The induced pseudoscalar form factor h„(q2) from
Fq. (10). The solid line is from the fits to g~(q ) and gmN/v(q )'
Also plotted in the inset are data from the electroproduction of
pion [18]. The typical size of the error bars for the solid line
is indicated in the inset.
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